Preferred Language
Articles
/
bsj-2108
Oscillations of Third Order Half Linear Neutral Differential Equations

In this paper the oscillation criterion was investigated for all solutions of the third-order half linear neutral differential equations. Some necessary and sufficient conditions are established for every solution of (a(t)[(x(t)±p(t)x(?(t) ) )^'' ]^? )^'+q(t) x^? (?(t) )=0, t?t_0, to be oscillatory. Examples are given to illustrate our main results.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Mar 10 2020
Journal Name
Journal Of Inverse And Ill-posed Problems
Direct and inverse source problems for degenerate parabolic equations
Abstract<p>Degenerate parabolic partial differential equations (PDEs) with vanishing or unbounded leading coefficient make the PDE non-uniformly parabolic, and new theories need to be developed in the context of practical applications of such rather unstudied mathematical models arising in porous media, population dynamics, financial mathematics, etc. With this new challenge in mind, this paper considers investigating newly formulated direct and inverse problems associated with non-uniform parabolic PDEs where the leading space- and time-dependent coefficient is allowed to vanish on a non-empty, but zero measure, kernel set. In the context of inverse analysis, we consider the linear but ill-pose</p> ... Show More
View Publication
Scopus (24)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2016
Journal Name
International Journal Of Pure And Apllied Mathematics
A SEMI ANALYTICAL ITERATIVE TECHNIQUE FOR SOLVING DUFFING EQUATIONS

View Publication
Crossref (11)
Crossref
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
The Operational Matrices Methods for Solving Falkner-Skan Equations

     The method of operational matrices is based on the Bernoulli and Shifted Legendre polynomials which is used to solve the Falkner-Skan equation. The nonlinear differential equation converting to a system of nonlinear equations is solved using Mathematica®12, and the approximate solutions are obtained. The efficiency of these methods was studied by calculating the maximum error remainder ( ), and it was found that their efficiency increases as  increases. Moreover, the obtained approximate solutions are compared with the numerical solution obtained by the fourth-order Runge-Kutta method (RK4), which gives  a good agreement.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed May 31 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Some Statistical Properties of Linear Volterra Integral Equation solutions

 Our aim of this research is to find the results of numerical solution of Volterra linear integral equation of the second kind using numerical methods such that Trapezoidal and Simpson's rule. That is to derive some statistical properties expected value, the variance and the correlation coefficient between the numerical and exact solutionâ–¡ 

View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Solution of Nonlinear High Order Multi-Point Boundary Value Problems By Semi-Analytic Technique

In this paper, we present new algorithm for the solution of the nonlinear high order multi-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of multi- point boundary value problems.

View Publication Preview PDF
Crossref
Publication Date
Thu Apr 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solution of 2nd Order Nonlinear Three-Point Boundary Value Problems By Semi-Analytic Technique

    In this paper, we present new algorithm for the solution of the second order nonlinear three-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions which are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of three point boundary value problems.

View Publication Preview PDF
Publication Date
Tue Jan 31 2017
Journal Name
Journal Of Engineering
Static Analysis of Laminated Composite Plate using New Higher Order Shear Deformation Plate Theory

 In the present work a theoretical analysis depending on the new higher order . element in shear deformation theory for simply supported cross-ply laminated plate is developed. The new displacement field of the middle surface expanded as a combination of exponential and trigonometric function of thickness coordinate with the transverse displacement taken to be constant through the thickness. The governing equations are derived using Hamilton’s principle and solved using Navier solution method to obtain the deflection and stresses under uniform sinusoidal load. The effect of many design parameters such as number of laminates, aspect ratio and thickness ratio on static behavior of the laminated composite plate has been studied. The

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 06 2020
Journal Name
Journal Of Techniques
Finite Element Modeling Of Saint-Venant Equations For Shatt-Al Hilla

Shatt Al-Hilla was considered one of the important branches of Euphrates River that supplies irrigation water to millions of dunams of planted areas. It is important to control the velocity and water level along the river to maintain the required level for easily diverting water to the branches located along the river. So, in this research, a numerical model was developed to simulate the gradually varied unsteady flow in Shatt AL-Hilla. The present study aims to solve the continuity and momentum (Saint-Venant) equations numerically to predict the hydraulic characteristics in the river using Galerkin finite element method. A computer program was designed and built using the programming language FORTRAN-77. Fifty kilometers was consid

... Show More
View Publication
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Annals Of Pure And Applied Mathematics
Linear Regression Model Using Bayesian Approach for Iraqi Unemployment Rate

In this paper we used frequentist and Bayesian approaches for the linear regression model to predict future observations for unemployment rates in Iraq. Parameters are estimated using the ordinary least squares method and for the Bayesian approach using the Markov Chain Monte Carlo (MCMC) method. Calculations are done using the R program. The analysis showed that the linear regression model using the Bayesian approach is better and can be used as an alternative to the frequentist approach. Two criteria, the root mean square error (RMSE) and the median absolute deviation (MAD) were used to compare the performance of the estimates. The results obtained showed that the unemployment rates will continue to increase in the next two decade

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
International Journal Of Advanced Research
ON STABILITY AND THE BOUNDEDNESS OF THE ZERO SOLUTION OF FIFTH ORDER

This paper is illustrates the sufficient conditions of the uniformly asymptotically stable and the bounded of the zero solution of fifth order nonlinear differential equation with a variable delay τ(t)