The aim of this research to show the role of some enzymes in pathological mechanism of rheumatoid arthritis (RA) disease. Sixty patients with RA and matched number of apparently healthy volunteers were included in the study. Spectrophotometric methods were used to determine Peroxy nitrite (ONOO), Nitric oxide (NO), Nitric oxide synthase activity (NOS) cycloxygenase-2 activity (COX-2), glutathione peroxidase (GPX) activity and superoxide dismutase (SOD) activity in serum of both groups. Colorimetric assay kits were used to determine Iron. Rheumatoid factor (RF) was determined using Imuno-Latex kit. ONOO, NO levels, and NOS activity were significantly higher in the patients compared to the control group. Conversely, Iron level, SOD activity and GPX activity were significantly lower in the patients compared to the control. In patients group, RF has significant positive correlation with COX-2, NOS activity and NO level while; it has significant negative correlation with Iron level. ONOO level has significant positive correlation with NO level, NOS activity and COX-2 activity while has significant negative correlation with Iron and SOD activity. NOS activity and NO level have significant positive correlation with COX-2 activity while, they have negative correlation with Iron. Iron has significant negative correlation with COX-2 activity. In control group, COX-2 has significant positive correlation with NOS activity and ONOO level. GPX has significant positive correlation with SOD and Iron. In conclusion: disorder activity of COX-2, NOS, SOD and GPX enzymes play important role in the pathological mechanism of rheumatoid arthritis and they linked with a decreased level of serum iron
Two different composite materials were prepared by stir casting method of AA 6061 alloy as a matrix reinforced with two addition different ceramic materials Al2O3 and B4C of grain size 20 µm by 2.5, 5, 7.5 and10% in weight. The composite material with aluminum alloy as a matrix possesses a unique mechanical properties such as: high specific strength and hardness, low density, and high resistance to corrosion and friction wear. This composite is widely used in automotive parts space and marine applications.
Pin-on-disc technique was used to calculate the wear rate for each addition of Al2O3 and B4C particles. Rockwell hardness test and
... Show MoreThis study thoroughly investigates the potential of niobium oxide (Nb2O5) thin films as UV-A photodetectors. The films were precisely fabricated using dc reactive magnetron sputtering on Si(100) and quartz substrates, maintaining a consistent power output of 50W while varying substrate temperatures. The dominant presence of hexagonal crystal structure Nb2O5 in the films was confirmed. An increased particle diameter at 150°C substrate temperature and a reduced Nb content at higher substrate temperatures were revealed. A distinct band gap with high UV sensitivity at 350 nm was determined. Remarkably, films sputtered using 50W displayed the highest photosensitivity at 514.89%. These outstanding optoelectronic properties highlight Nb2O5 thin f
... Show MoreIn this work, the plasma parameters (electron temperature and
electron density) were determined by optical emission spectroscopy
(OES) produced by the RF magnetron Zn plasma produced by
oxygen and argon at different working pressure. The spectrum was
recorded by spectrometer supplied with CCD camera, computer and
NIST standard of neutral and ionic lines of Zn, argon and oxygen.
The effects of pressure on plasma parameters were studied and a
comparison between the two gasses was made.
In this research, the electrical characteristics of glow discharge plasma were studied. Glow discharge plasma generated in a home-made DC magnetron sputtering system, and a DC-power supply of high voltage as input to the discharge electrodes were both utilized. The distance between two electrodes is 4cm. The gas used to produce plasma is argon gas which flows inside the chamber at a rate of 40 sccm. The influence of work function for different target materials (gold, copper, and silver), - 5cm in diameter and around 1mm thickness - different working pressures, and different applied voltages on electrical characteristics (discharge current, discharge potential, and Paschen’s curve) were studied. The results showed that the discharge cur
... Show MoreThere is a great operational risk to control the day-to-day management in water treatment plants, so water companies are looking for solutions to predict how the treatment processes may be improved due to the increased pressure to remain competitive. This study focused on the mathematical modeling of water treatment processes with the primary motivation to provide tools that can be used to predict the performance of the treatment to enable better control of uncertainty and risk. This research included choosing the most important variables affecting quality standards using the correlation test. According to this test, it was found that the important parameters of raw water: Total Hardn
In the present work, the focusing was on the study of the x-ray diffraction, dielectric constant, loses dielectric coefficient, tangent angle, alter- natively conductivity and morphology of PET/BaTio3. The PET/BaTio3 composite was prepared for polyethylene terephthalate PET polymer composite containing 0, 10, 20, 30, 40, 50, and 60 wt. % from Barium titanate BaTi03 powder. The composite of two materials leads to form mixing solution and hot-pressing method. The effect of BaTio3 on the structure and dielectric properties with morphology was studied on PET matrix polymer using XRD, LCR meter and SEM.