In this paper, method of steganography in Audio is introduced for hiding secret data in audio media file (WAV). Hiding in audio becomes a challenging discipline, since the Human Auditory System is extremely sensitive. The proposed method is to embed the secret text message in frequency domain of audio file. The proposed method contained two stages: the first embedding phase and the second extraction phase. In embedding phase the audio file transformed from time domain to frequency domain using 1-level linear wavelet decomposition technique and only high frequency is used for hiding secreted message. The text message encrypted using Data Encryption Standard (DES) algorithm. Finally; the Least Significant bit (LSB) algorithm used to hide secret message in high frequency. The proposed approach tested in different sizes of audio file and showed the success of hiding according to (PSNR) equation.
Measuring the efficiency of postgraduate and undergraduate programs is one of the essential elements in educational process. In this study, colleges of Baghdad University and data for the academic year (2011-2012) have been chosen to measure the relative efficiencies of postgraduate and undergraduate programs in terms of their inputs and outputs. A relevant method to conduct the analysis of this data is Data Envelopment Analysis (DEA). The effect of academic staff to the number of enrolled and alumni students to the postgraduate and undergraduate programs are the main focus of the study.
Crime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o
The successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classifi
... Show MoreWellbore instability and sand production onset modeling are very affected by Sonic Shear Wave Time (SSW). In any field, SSW is not available for all wells due to the high cost of measuring. Many authors developed empirical correlations using information from selected worldwide fields for SSW prediction. Recently, researchers have used different Artificial Intelligence methods for estimating SSW. Three existing empirical correlations of Carroll, Freund, and Brocher are used to estimate SSW in this paper, while a fourth new empirical correlation is established. For comparing with the empirical correlation results, another study's Artificial Neural Network (ANN) was used. The same data t
... Show MoreThe Moisture damage is considered as one of the main challenge for the experts in the field of asphalt pavement design. The aims of the present study is to modify moisture resistance of the asphalt concrete by utilizing ceramic fibers as a type of reinforcement incorporated with hydrated lime. For this purpose, a penetration grade of the asphalt cement (40-50) was utilized as a binder with an aggregate of the maximum nominal size of 12.5mm and mineral filler limestone dust. A series of specimens has been fabricated by utilizing 0.50, 1.0, 1.5, and 2.0 percentages of ceramic fibers. For each of these contents, another subsequent group of specimens with hydrated lime with 0.0, 1.0, 1.5, and 2.0 percentages were moulded. For the additi
... Show MoreBiosorpion of lead (Pb), Cadmium (Cd) and Nickl(Ni) by dried biomass of Chara sp. for sample of BMP was used as alternative approach of conventional method. The range of removal percentages was between 92-97%, 70-98.7% and 46.6-96.6% for Pb, Cd and Ni respectively at 3h.Treatment time, with 300-500 mg dried weight from Chara sp. powder at pH 4, with 60 rpm at shaker. FTIR analysis showed the active groups which are responsible for sequestration of heavy metals represented by carboxyl, hydroxyl alkyl, amine and amide. The Biosorption equilibrium experiment for elements showed that the highest sorption percentage for three elements was, Pb 96.6% after 30 minute, for Cd was 100% after 15 minute and 40% to Ni after 75 minute, while the biosorp
... Show MoreRA Ali, LK Abood, Int J Sci Res, 2017 - Cited by 2