In this work, we first construct Hermite wavelets on the interval [0,1) with it’s product, Operational matrix of integration 2^k M×2^k M is derived, and used it for solving nonlinear Variational problems with reduced it to a system of algebric equations and aid of direct method. Finally, some examples are given to illustrate the efficiency and performance of presented method.
This study investigates the challenges encountered by first-grade intermediate students in learning the Arabic language. It aims to identify specific obstacles that hinder language acquisition and proficiency among this demographic. Through qualitative and quantitative methods, including surveys and interviews with students, teachers, and parents, the research highlights key issues such as limited vocabulary, difficulties in grammar, lack of engagement with the material, and inadequate teaching resources. The findings reveal a complex interplay between cognitive, social, and educational factors that contribute to these challenges. The study underscores the need for targeted interventions, such as enhanced pedagogical strategies and improved
... Show MoreHCl is separated from HCl –H2SO4 solution by membrane distillation process(MD). The flat –sheet membranes made from polyvinylidene fluoride (PVDF) and polypropylene (pp.). Plate and frame these types of membrane where used in the process. The feed is a mixture of HCl and H2SO4 acids compositions depended on metals treated object.HCl concentration increased in the permeate during the process but sulfuric acid increased gradually in the feed .During the concentration of solution acids concentrations in the feed at the beginning were 50 g/dm3 of sulfuric acid and 50 g/dm3 of hydrochloric acid at 333K feed temperature the permeate flux was 71 dm
... Show MoreThis paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show MoreIn this paper the Galerkin method is used to prove the existence and uniqueness theorem for the solution of the state vector of the triple linear elliptic partial differential equations for fixed continuous classical optimal control vector. Also, the existence theorem of a continuous classical optimal control vector related with the triple linear equations of elliptic types is proved. The existence of a unique solution for the triple adjoint equations related with the considered triple of the state equations is studied. The Fréchet derivative of the cost function is derived. Finally the theorem of necessary conditions for optimality of the considered problem is proved.
In this work, we prove that the triple linear partial differential equations (PDEs) of elliptic type (TLEPDEs) with a given classical continuous boundary control vector (CCBCVr) has a unique "state" solution vector (SSV) by utilizing the Galerkin's method (GME). Also, we prove the existence of a classical continuous boundary optimal control vector (CCBOCVr) ruled by the TLEPDEs. We study the existence solution for the triple adjoint equations (TAJEs) related with the triple state equations (TSEs). The Fréchet derivative (FDe) for the objective function is derived. At the end we prove the necessary "conditions" theorem (NCTh) for optimality for the problem.
Date stones were used as precursor for the preparation of activated carbons by chemical
activation with ferric chloride and zinc chloride. The effects of operating conditions represented
by the activation time, activation temperature, and impregnation ratio on the yield and adsorption
capacity towards methylene blue (MB) of prepared activated carbon by ferric chloride activation
(FAC) and zinc chloride activation (ZAC) were studied. For FAC, an optimum conditions of 1.25
h activation time, 700 °C activation temperature, and 1.5 impregnation ratio gave 185.15 mg/g
MB uptake and 47.08 % yield, while for ZAC, 240.77 mg/g MB uptake and 40.46 % yield were
obtained at the optimum conditions of 1.25 h activation time, 500
This research deals with unusual approach for analyzing the Simple Linear Regression via Linear Programming by Two - phase method, which is known in Operations Research: “O.R.”. The estimation here is found by solving optimization problem when adding artificial variables: Ri. Another method to analyze the Simple Linear Regression is introduced in this research, where the conditional Median of (y) was taken under consideration by minimizing the Sum of Absolute Residuals instead of finding the conditional Mean of (y) which depends on minimizing the Sum of Squared Residuals, that is called: “Median Regression”. Also, an Iterative Reweighted Least Squared based on the Absolute Residuals as weights is performed here as another method to
... Show MoreThis paper introduces the Multistep Modified Reduced Differential Transform Method (MMRDTM). It is applied to approximate the solution for Nonlinear Schrodinger Equations (NLSEs) of power law nonlinearity. The proposed method has some advantages. An analytical approximation can be generated in a fast converging series by applying the proposed approach. On top of that, the number of computed terms is also significantly reduced. Compared to the RDTM, the nonlinear term in this method is replaced by related Adomian polynomials prior to the implementation of a multistep approach. As a consequence, only a smaller number of NLSE computed terms are required in the attained approximation. Moreover, the approximation also converges rapidly over a
... Show More