Preferred Language
Articles
/
bsj-2082
A Solution of Second Kind Volterra Integral Equations Using Third Order Non-Polynomial Spline Function
...Show More Authors

In this paper, third order non-polynomial spline function is used to solve 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of this method, and to compare the computed results with other known methods.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
Approximate Solution of Delay Differential Equations Using the Collocation Method Based on Bernstien Polynomials???? ???????? ????????? ????????? ????????? ???????? ?????????? ???????? ??? ??????? ???? ?????????
...Show More Authors

In this paper a modified approach have been used to find the approximate solution of ordinary delay differential equations with constant delay using the collocation method based on Bernstien polynomials.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Ieee Access
On Computational Aspects of Tchebichef Polynomials for Higher Polynomial Order
...Show More Authors

View Publication
Scopus (52)
Crossref (54)
Scopus Clarivate Crossref
Publication Date
Wed Apr 25 2012
Journal Name
The Nineteenth Scientific Conference The College Of Education \al-mustansiriyah University
Solution of Ordinary BVP's of Eighth Order Using Osculatory Interpolation Technique
...Show More Authors

The aim of this paper is to present method for solving ordinary differential equations of eighth order with two point boundary conditions. We propose two-point osculatory interpolation to construct polynomial solution.

View Publication
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
First Order Nonlinear Neutral Delay Differential Equations
...Show More Authors

The author obtain results on the asymptotic behavior of the nonoscillatory solutions of first order nonlinear neutral differential equations. Keywords. Neutral differential equations, Oscillatory and Nonoscillatory solutions.

View Publication Preview PDF
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Numerical Solutions for the Nonlinear PDEs of Fractional Order by Using a New Double Integral Transform with Variational Iteration Method
...Show More Authors

This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient

View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Oscillation of Nonlinear First Order Neutral Differential Equations
...Show More Authors

In this paper, the author established some new integral conditions for the oscillation of all solutions of nonlinear first order neutral delay differential equations. Examples are inserted to illustrate the results.

View Publication Preview PDF
Crossref
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
some properties of the nonscillatory solutions of second order
...Show More Authors

in this paper the second order neutral differential equations are incestigated are were we give some new suffucient conditions for all nonoscillatory

View Publication Preview PDF
Publication Date
Sun Sep 06 2015
Journal Name
Baghdad Science Journal
A New Three Step Iterative Method without Second Derivative for Solving Nonlinear Equations
...Show More Authors

In this paper , an efficient new procedure is proposed to modify third –order iterative method obtained by Rostom and Fuad [Saeed. R. K. and Khthr. F.W. New third –order iterative method for solving nonlinear equations. J. Appl. Sci .7(2011): 916-921] , using three steps based on Newton equation , finite difference method and linear interpolation. Analysis of convergence is given to show the efficiency and the performance of the new method for solving nonlinear equations. The efficiency of the new method is demonstrated by numerical examples.

View Publication Preview PDF
Crossref
Publication Date
Sun Apr 30 2017
Journal Name
Ibn Al-haitham Jour. For Pure & Appl. Sci.
Solution of High Order Ordinary Boundary Value Problems Using Semi-Analytic Technique
...Show More Authors

The aim of this paper is to present a method for solving high order ordinary differential equations with two point's boundary condition, we propose semi-analytic technique using two-point oscillatory interpolation to construct polynomial solution. The original problem is concerned using two-point oscillatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, many examples are presented to demonstrate the applicability, accuracy and efficiency of the method by comparing with conventional methods.

View Publication
Publication Date
Sun Apr 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solution of High Order Ordinary Boundary Value Problems Using Semi-Analytic Technique
...Show More Authors

  The aim of this paper is to present a method for solving high order ordinary differential equations with two point's boundary condition, we propose semi-analytic technique using two-point oscillatory interpolation to construct polynomial solution. The original problem is concerned using two-point oscillatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] .  Also, many examples are presented to demonstrate the applicability, accuracy and efficiency of the method by comparing with conventional methods.

View Publication