In this paper,the homtopy perturbation method (HPM) was applied to obtain the approximate solutions of the fractional order integro-differential equations . The fractional order derivatives and fractional order integral are described in the Caputo and Riemann-Liouville sense respectively. We can easily obtain the solution from convergent the infinite series of HPM . A theorem for convergence and error estimates of the HPM for solving fractional order integro-differential equations was given. Moreover, numerical results show that our theoretical analysis are accurate and the HPM can be considered as a powerful method for solving fractional order integro-diffrential equations.
A numerical method is developed for calculation of the wake geometry and aerodynamic forces on two-dimensional airfoil under going an arbitrary unsteady motion in an inviscid incompressible flow (panel method). The method is applied to sudden change in airfoil incidence angle and airfoil oscillations at high reduced frequency. The effect of non-linear wake on the unsteady aerodynamic properties and oscillatory amplitude on wake rollup and aerodynamic forces has been studied. The results of the present method shows good accuracy as compared with flat plate and for unsteady motion with heaving and pitching oscillation the present method also shows good trend with the experimental results taken from published data. The method shows good result
... Show MoreThis paper presents an alternative method for developing effective embedded optimized Runge-Kutta (RK) algorithms to solve oscillatory problems numerically. The embedded scheme approach has algebraic orders of 5 and 4. By transforming second-order ordinary differential equations (ODEs) into their first-order counterpart, the suggested approach solves first-order ODEs. The amplification error, phase-lag, and first derivative of the phase-lag are all nil in the embedded pair. The alternative method’s absolute stability is demonstrated. The numerical tests are conducted to demonstrate the effectiveness of the developed approach in comparison to other RK approaches. The alternative approach outperforms the current RK methods
... Show MoreThe fuzzy sets theory has been applied in many fields, such as operations research, control theory and management sciences, etc. In particular, an application of this theory in decision making problem is linear programming problems with fuzzy technological coefficients numbers, as well as studying the parametric linear programming problems in the case of changes in the objective function. In this paper presenting a new procedure which connects and makes link between fuzzy linear programming problem with fuzzy technological coefficients numbers and parametric linear programming problem with change in coefficients of the objective function, then develop a numerical example illustrates the steps of solution to this kind of problems.
In this paper, a computational method for solving optimal problem is presented, using indirect method (spectral methodtechnique) which is based on Boubaker polynomial. By this method the state and the adjoint variables are approximated by Boubaker polynomial with unknown coefficients, thus an optimal control problem is transformed to algebraic equations which can be solved easily, and then the numerical value of the performance index is obtained. Also the operational matrices of differentiation and integration have been deduced for the same polynomial to help solving the problems easier. A numerical example was given to show the applicability and efficiency of the method. Some characteristics of this polynomial which can be used for solvin
... Show MoreFingerprint recognition is one among oldest procedures of identification. An important step in automatic fingerprint matching is to mechanically and dependably extract features. The quality of the input fingerprint image has a major impact on the performance of a feature extraction algorithm. The target of this paper is to present a fingerprint recognition technique that utilizes local features for fingerprint representation and matching. The adopted local features have determined: (i) the energy of Haar wavelet subbands, (ii) the normalized of Haar wavelet subbands. Experiments have been made on three completely different sets of features which are used when partitioning the fingerprint into overlapped blocks. Experiments are conducted on
... Show MoreThe goal of this paper is to construct an arcs of size five and six with stabilizer groups of type alternating group of degree five and degree six . Also construct an arc of degree five and size with its stabilizer group, and then study the effect of and on the points of projective plane. Also, find a pentastigm which has the points on a line. Partitions on projective plane of order sixteen into subplanes and arcs have been described.
The main aims purpose of this study is to find the stabilizer groups of a cubic curves over a finite field of order 16, also studying the properties of their groups, and then constructing all different cubic curves, and known which one of them is complete or not. The arcs of degree 2 which are embedding into a cubic curves of even size have been constructed.
The differential cross section for the Rhodium and Tantalum has been calculated by using the Cross Section Calculations (CSC) in range of energy(1keV-1MeV) . This calculations based on the programming of the Klein-Nashina and Rayleigh Equations. Atomic form factors as well as the coherent functions in Fortran90 language Machine proved very fast an accurate results and the possibility of application of such model to obtain the total coefficient for any elements or compounds.
The influence of an aortic aneurysm on blood flow waveforms is well established, but how to exploit this link for diagnostic purposes still remains challenging. This work uses a combination of experimental and computational modelling to study how aneurysms of various size affect the waveforms. Experimental studies are carried out on fusiform-type aneurysm models, and a comparison of results with those from a one-dimensional fluid–structure interaction model shows close agreement. Further mathematical analysis of these results allows the definition of several indicators that characterize the impact of an aneurysm on waveforms. These indicators are then further studied in a computational model of a systemic blood flow network. This demonstr
... Show More