Preferred Language
Articles
/
bsj-2060
Convergence of the Generalized Homotopy Perturbation Method for Solving Fractional Order Integro-Differential Equations
...Show More Authors

In this paper,the homtopy perturbation method (HPM) was applied to obtain the approximate solutions of the fractional order integro-differential equations . The fractional order derivatives and fractional order integral are described in the Caputo and Riemann-Liouville sense respectively. We can easily obtain the solution from convergent the infinite series of HPM . A theorem for convergence and error estimates of the HPM for solving fractional order integro-differential equations was given. Moreover, numerical results show that our theoretical analysis are accurate and the HPM can be considered as a powerful method for solving fractional order integro-diffrential equations.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue May 01 2012
Journal Name
Engineering Analysis With Boundary Elements
Radial integration boundary integral and integro-differential equation methods for two-dimensional heat conduction problems with variable coefficients
...Show More Authors

View Publication
Crossref (33)
Crossref
Publication Date
Sun Dec 01 2024
Journal Name
Partial Differential Equations In Applied Mathematics
The modeling and mathematical analysis of the fractional-order of Cholera disease: Dynamical and Simulation
...Show More Authors

In this study, a cholera model with asymptomatic carriers was examined. A Holling type-II functional response function was used to describe disease transmission. For analyzing the dynamical behavior of cholera disease, a fractional-order model was developed. First, the positivity and boundedness of the system's solutions were established. The local stability of the equilibrium points was also analyzed. Second, a Lyapunov function was used to construct the global asymptotic stability of the system for both endemic and disease-free equilibrium points. Finally, numerical simulations and sensitivity analysis were carried out using matlab software to demonstrate the accuracy and validate the obtained results.

View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Sun Aug 09 2015
Journal Name
No
Stability and Instability of Some Types of Delay Differential Equations
...Show More Authors

Publication Date
Sun Dec 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Solving the Inverse Kinematic Equations of Elastic Robot Arm Utilizing Neural Network
...Show More Authors

The inverse kinematic equation for a robot is very important to the control robot’s motion and position. The solving of this equation is complex for the rigid robot due to the dependency of this equation on the joint configuration and structure of robot link. In light robot arms, where the flexibility exists, the solving of this problem is more complicated than the rigid link robot because the deformation variables (elongation and bending) are present in the forward kinematic equation. The finding of an inverse kinematic equation needs to obtain the relation between the joint angles and both of the end-effector position and deformations variables. In this work, a neural network has been proposed to solve the problem of inverse kinemati

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Oct 28 2023
Journal Name
Baghdad Science Journal
Newton-Kantorovich Method for Solving One of the Non-Linear Sturm-Liouville Problems
...Show More Authors

Due to its importance in physics and applied mathematics, the non-linear Sturm-Liouville problems
witnessed massive attention since 1960. A powerful Mathematical technique called the Newton-Kantorovich
method is applied in this work to one of the non-linear Sturm-Liouville problems. To the best of the authors’
knowledge, this technique of Newton-Kantorovich has never been applied before to solve the non-linear
Sturm-Liouville problems under consideration. Accordingly, the purpose of this work is to show that this
important specific kind of non-linear Sturm-Liouville differential equations problems can be solved by
applying the well-known Newton-Kantorovich method. Also, to show the efficiency of appl

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
A general solution of some linear partial differential equations via two integral transforms
...Show More Authors

In this paper, a new analytical method is introduced to find the general solution of linear partial differential equations. In this method, each Laplace transform (LT) and Sumudu transform (ST) is used independently along with canonical coordinates. The strength of this method is that it is easy to implement and does not require initial conditions.

View Publication
Clarivate
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
A Proposed Analytical Method for Solving Fuzzy Linear Initial Value Problems
...Show More Authors

     In this article, we aim to define a universal set consisting of the subscripts of the fuzzy differential equation (5) except the two elements  and , subsets of that universal set are defined according to certain conditions. Then, we use the constructed universal set with its subsets for suggesting an analytical method which facilitates solving fuzzy initial value problems of any order by using the strongly generalized H-differentiability. Also, valid sets with graphs for solutions of fuzzy initial value problems of higher orders are found.

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Mar 02 2008
Journal Name
Baghdad Science Journal
Orthogonal Functions Solving Linear functional Differential EquationsUsing Chebyshev Polynomial
...Show More Authors

A method for Approximated evaluation of linear functional differential equations is described. where a function approximation as a linear combination of a set of orthogonal basis functions which are chebyshev functions .The coefficients of the approximation are determined by (least square and Galerkin’s) methods. The property of chebyshev polynomials leads to good results , which are demonstrated with examples.

View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sun Dec 06 2015
Journal Name
Baghdad Science Journal
Bounded Solutions of the Second Order Differential Equation x ?+f(x) x ?+g(x)=u(t)
...Show More Authors

In this paper we prove the boundedness of the solutions and their derivatives of the second order ordinary differential equation x ?+f(x) x ?+g(x)=u(t), under certain conditions on f,g and u. Our results are generalization of those given in [1].

View Publication Preview PDF
Crossref
Publication Date
Mon Aug 06 2018
Journal Name
Indian Journal Of Applied Research
STATISTICAL METHOD FOR SOLVING TRANSPORTATION PROBLEMS OF USING THE PROGRAMMING LANGUAGE MATLAB
...Show More Authors

Original Research Paper Mathematics 1-Introduction : In the light of the progress and rapid development of the applications of research in applications fields, the need to rely on scientific tools and cleaner for data processing has become a prominent role in the resolution of decisions in industrial and service institutions according to the real need of these methods to make them scientific methods to solve the problem Making decisions for the purpose of making the departments succeed in performing their planning and executive tasks. Therefore, we found it necessary to know the transport model in general and to use statistical methods to reach the optimal solution with the lowest possible costs in particular. And you know The Transportatio

... Show More