Preferred Language
Articles
/
bsj-2059
The Modified Quadrature Method for solving Volterra Linear Integral Equations

In this paper the modified trapezoidal rule is presented for solving Volterra linear Integral Equations (V.I.E) of the second kind and we noticed that this procedure is effective in solving the equations. Two examples are given with their comparison tables to answer the validity of the procedure.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Analytic Solutions For Integro-Differential Inequalities Using Modified Adomian Decomposition Method

   This paper applies the Modified Adomian Decomposition Method (MADM) for solving Integro-Differential Inequality, this method  is one of effective to construct analytic approximate solutions for linear and nonlinear integro-differential inequalities without solving many integrals and transformed or discretization. Several examples are presented, the analytic results show that this method is a promising and powerful for solving these problems.

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Tue Sep 29 2020
Journal Name
Iraqi Journal Of Science
Asymptotic Criteria of Neutral Differential Equations with Positive and Negative Coefficients and Impulsive Integral Term

In this paper, the asymptotic behavior of all solutions of impulsive neutral differential equations with positive and negative coefficients and with impulsive integral term was investigated. Some sufficient conditions were obtained to ensure that all nonoscillatory solutions converge to zero. Illustrative examples were given for the main results.

Scopus (4)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Arab Journal Of Basic And Applied Sciences
Crossref (2)
Crossref
View Publication
Publication Date
Sun Jun 05 2011
Journal Name
Baghdad Science Journal
Some Probability Characteristics Functions of the Solution of a Stochastic Non-Linear Fredholm Integral Equation of the Second Kind

In this research, some probability characteristics functions (probability density, characteristic, correlation and spectral density) are derived depending upon the smallest variance of the exact solution of supposing stochastic non-linear Fredholm integral equation of the second kind found by Adomian decomposition method (A.D.M)

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sun Jun 07 2015
Journal Name
Baghdad Science Journal
Direct method for Solving Nonlinear Variational Problems by Using Hermite Wavelets

In this work, we first construct Hermite wavelets on the interval [0,1) with it’s product, Operational matrix of integration 2^k M×2^k M is derived, and used it for solving nonlinear Variational problems with reduced it to a system of algebric equations and aid of direct method. Finally, some examples are given to illustrate the efficiency and performance of presented method.

Crossref
View Publication Preview PDF
Publication Date
Thu Oct 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Iterative Method for Solving a Nonlinear Fourth Order Integro-Differential Equation

This study presents the execution of an iterative technique suggested by Temimi and Ansari (TA) method to approximate solutions to a boundary value problem of a 4th-order nonlinear integro-differential equation (4th-ONIDE) of the type Kirchhoff which appears in the study of transverse vibration of hinged shafts. This problem is difficult to solve because there is a non-linear term under the integral sign, however, a number of authors have suggested iterative methods for solving this type of equation. The solution is obtained as a series that merges with the exact solution. Two examples are solved by TA method, the results showed that the proposed technique was effective, accurate, and reliable. Also, for greater reliability, the approxim

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Mar 02 2008
Journal Name
Baghdad Science Journal
Orthogonal Functions Solving Linear functional Differential EquationsUsing Chebyshev Polynomial

A method for Approximated evaluation of linear functional differential equations is described. where a function approximation as a linear combination of a set of orthogonal basis functions which are chebyshev functions .The coefficients of the approximation are determined by (least square and Galerkin’s) methods. The property of chebyshev polynomials leads to good results , which are demonstrated with examples.

Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Sun Apr 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Solving a three dimensional transportation problem using linear programming

Transport is a problem and one of the most important mathematical methods that help in making the right decision for the transfer of goods from sources of supply to demand centers and the lowest possible costs, In this research, the mathematical model of the three-dimensional transport problem in which the transport of goods is not homogeneous was constructed. The simplex programming method was used to solve the problem of transporting the three food products (rice, oil, paste) from warehouses to the student areas in Baghdad, This model proved its efficiency in reducing the total transport costs of the three products. After the model was solved in (Winqsb) program, the results showed that the total cost of transportation is (269,

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Nov 01 2014
Journal Name
International Journal Of Basic And Applied Sciences
A reliable iterative method for solving the epidemic model and the prey and predator problems

In the present article, we implement the new iterative method proposed by Daftardar-Gejji and Jafari (NIM) [V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve two problems; the first one is the problem of spread of a non-fatal disease in a population which is assumed to have constant size over the period of the epidemic, and the other one is the problem of the prey and predator. The results demonstrate that the method has many merits such as being derivative-free, overcome the difficulty arising in calculating Adomian polynomials to handle the nonlinear terms in Adomian Decomposition Method (ADM), does not require to calculate Lagrange multiplier a

... Show More
Crossref (4)
Crossref
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Lecture Notes In Electrical Engineering
Scopus Crossref
View Publication