Preferred Language
Articles
/
bsj-2020
A New Operational Matrix of Derivative for Orthonormal Bernstein Polynomial's
...Show More Authors

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 06 2015
Journal Name
Baghdad Science Journal
New Operational Matrices of Seventh Degree Orthonormal Bernstein Polynomials
...Show More Authors

Based on analyzing the properties of Bernstein polynomials, the extended orthonormal Bernstein polynomials, defined on the interval [0, 1] for n=7 is achieved. Another method for computing operational matrices of derivative and integration D_b and R_(n+1)^B respectively is presented. Also the result of the proposed method is compared with true answers to show the convergence and advantages of the new method.

View Publication Preview PDF
Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Solving Optimal Control Linear Systems by Using New Third kind Chebyshev Wavelets Operational Matrix of Derivative
...Show More Authors

In this paper, a new third kind Chebyshev wavelets operational matrix of derivative is presented, then the operational matrix of derivative is applied for solving optimal control problems using, third kind Chebyshev wavelets expansions. The proposed method consists of reducing the linear system of optimal control problem into a system of algebraic equations, by expanding the state variables, as a series in terms of third kind Chebyshev wavelets with unknown coefficients. Example to illustrate the effectiveness of the method has been presented.

View Publication Preview PDF
Crossref
Publication Date
Thu Oct 01 2020
Journal Name
Alexandria Engineering Journal
The operational matrix of Legendre polynomials for solving nonlinear thin film flow problems
...Show More Authors

View Publication
Crossref (5)
Crossref
Publication Date
Thu Oct 01 2020
Journal Name
Alexandria Engineering Journal
The operational matrix of Legendre polynomials for solving nonlinear thin film flow problems
...Show More Authors

Scopus (11)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
Matrix Form of Deriving High Order Schemes for the First Derivative
...Show More Authors

For many problems in Physics and Computational Fluid Dynamics (CFD), providing an accurate approximation of derivatives is a challenging task. This paper presents a class of high order numerical schemes for approximating the first derivative. These approximations are derived based on solving a special system of equations with some unknown coefficients. The construction method provides numerous types of schemes with different orders of accuracy. The accuracy of each scheme is analyzed by using Fourier analysis, which illustrates the dispersion and dissipation of the scheme. The polynomial technique is used to verify the order of accuracy of the proposed schemes by obtaining the error terms. Dispersion and dissipation errors are calculated

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
On Some Approximation Properties for a Sequence of λ-Bernstein Type Operators
...Show More Authors

In 2010, Long and Zeng introduced a new generalization of the Bernstein polynomials that depends on a parameter  and called -Bernstein polynomials. After that, in 2018, Lain and Zhou studied the uniform convergence for these -polynomials and obtained a Voronovaskaja-type asymptotic formula in ordinary approximation. This paper studies the convergence theorem and gives two Voronovaskaja-type asymptotic formulas of the sequence of -Bernstein polynomials in both ordinary and simultaneous approximations. For this purpose, we discuss the possibility of finding the recurrence relations of the -th order moment for these polynomials and evaluate the values of -Bernstein for the functions ,  is a non-negative integer

View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sun Sep 06 2015
Journal Name
Baghdad Science Journal
A New Three Step Iterative Method without Second Derivative for Solving Nonlinear Equations
...Show More Authors

In this paper , an efficient new procedure is proposed to modify third –order iterative method obtained by Rostom and Fuad [Saeed. R. K. and Khthr. F.W. New third –order iterative method for solving nonlinear equations. J. Appl. Sci .7(2011): 916-921] , using three steps based on Newton equation , finite difference method and linear interpolation. Analysis of convergence is given to show the efficiency and the performance of the new method for solving nonlinear equations. The efficiency of the new method is demonstrated by numerical examples.

View Publication Preview PDF
Crossref
Publication Date
Thu Aug 01 2019
Journal Name
Ieee Internet Of Things Journal
A New Task Allocation Protocol for Extending Stability and Operational Periods in Internet of Things
...Show More Authors

Scopus (16)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sun May 30 2021
Journal Name
Iraqi Journal Of Science
Theoretical study of a new oxazolidine -5- one derivative as a corrosion inhibitor for carbon steel surface
...Show More Authors

A newly derivative of oxazolidin-5- one namely [2-(2-biphenyl-4-yl-imidazo [1,2-a] pyridine-3-yl)-3-(4-nitro-phenyl)-oxazolidin-5-one (BIPNO5)] was examined as an corrosion inhibitor for carbon steel surface. Quantum mechanical method of Density Functional Theory (DFT) with (B3LYP (6-311++G (2d, 2p)) level of theory was used to calculate the minimize structure, physical properties and inhibition chemical parameters, in vacuum and two solvents (DMSO and H2O), all at equilibrium geometry. The results indicated that the new derivative could adsorb on the surface of carbon steel through the heteroatom, showing that the new inhibitor has good corrosion inhibition performance.

View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
A New Two Derivative FSAL Runge-Kutta Method of Order Five in Four Stages
...Show More Authors

A new efficient Two Derivative Runge-Kutta method (TDRK) of order five is developed for the numerical solution of the special first order ordinary differential equations (ODEs). The new method is derived using the property of First Same As Last (FSAL). We analyzed the stability of our method. The numerical results are presented to illustrate the efficiency of the new method in comparison with some well-known RK methods.

View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref