A submoduleA of amodule M is said to be strongly pure , if for each finite subset {ai} in A , (equivalently, for each a ?A) there exists ahomomorphism f : M ?A such that f(ai) = ai, ?i(f(a)=a).A module M is said to be strongly F–regular if each submodule of M is strongly pure .The main purpose of this paper is to develop the properties of strongly F–regular modules and study modules with the property that the intersection of any two strongly pure submodules is strongly pure .
Throughout this paper we introduce the notion of coextending module as a dual of the class of extending modules. Various properties of this class of modules are given, and some relationships between these modules and other related modules are introduced.
Let R be a commutative ring with unity 1 6= 0, and let M be a unitary left module over R. In this paper we introduce the notion of epiform∗ modules. Various properties of this class of modules are given and some relationships between these modules and other related modules are introduced.
Let R be a commutative ring with identity, and let M be a unitary (left) R- modul e. The ideal annRM = {r E R;rm = 0 V mE M} plays a central
role in our work. In fact, we shall be concemed with the case where annR1i1 = annR(x) for some x EM such modules will be called bounded modules.[t htrns out that there are many classes of modules properly contained in the class of bounded modules such as cyclic modules, torsion -G·ee modulcs,faithful multiplicat
... Show MoreIn networking communication systems like vehicular ad hoc networks, the high vehicular mobility leads to rapid shifts in vehicle densities, incoherence in inter-vehicle communications, and challenges for routing algorithms. It is necessary that the routing algorithm avoids transmitting the pockets via segments where the network density is low and the scale of network disconnections is high as this could lead to packet loss, interruptions and increased communication overhead in route recovery. Hence, attention needs to be paid to both segment status and traffic. The aim of this paper is to present an intersection-based segment aware algorithm for geographic routing in vehicular ad hoc networks. This algorithm makes available the best route f
... Show MoreLet R be a commutative ring with identity 1 ¹ 0, and let M be a unitary left module over R. A submodule N of an R-module M is called essential, if whenever N ⋂ L = (0), then L = (0) for every submodule L of M. In this case, we write N ≤e M. An R-module M is called extending, if every submodule of M is an essential in a direct summand of M. A submodule N of an R-module M is called semi-essential (denoted by N ≤sem M), if N ∩ P ≠ (0) for each nonzero prime submodule P of M. The main purpose of this work is to determine and study two new concepts (up to our knowledge) which are St-closed submodules and semi-extending modules. St-closed submodules is contained properly in the class of closed submodules, where a submodule N of
... Show MoreLet R be a commutative ring , the pseudo – von neuman regular graph of the ring R is define as a graph whose vertex set consists of all elements of R and any two distinct vertices a and b are adjacent if and only if , this graph denoted by P-VG(R) , in this work we got some new results a bout chromatic number of P-VG(R).
High vehicular mobility causes frequent changes in the density of vehicles, discontinuity in inter-vehicle communication, and constraints for routing protocols in vehicular ad hoc networks (VANETs). The routing must avoid forwarding packets through segments with low network density and high scale of network disconnections that may result in packet loss, delays, and increased communication overhead in route recovery. Therefore, both traffic and segment status must be considered. This paper presents real-time intersection-based segment aware routing (RTISAR), an intersection-based segment aware algorithm for geographic routing in VANETs. This routing algorithm provides an optimal route for forwarding the data packets toward their destination
... Show MoreThe purpose of this paper is to introduce and prove some coupled coincidence fixed point theorems for self mappings satisfying -contractive condition with rational expressions on complete partially ordered metric spaces involving altering distance functions with mixed monotone property of the mapping. Our results improve and unify a multitude of coupled fixed point theorems and generalize some recent results in partially ordered metric space. An example is given to show the validity of our main result.
Let R be a commutative ring with identity, and let M be a unitary left R-module. M is called special selfgenerator or weak multiplication module if for each cyclic submodule Ra of M (equivalently, for each submodule N of M) there exists a family {fi} of endomorphism of M such that Ra = ∑_i▒f_i (M) (equivalently N = ∑_i▒f_i (M)). In this paper we introduce a class of modules properly contained in selfgenerator modules called special selfgenerator modules, and we study some of properties of these modules.