A new chelate complexes of Co(II),Ni(II),Zn(II) and Cd(II) were prepared by reacting these ions with the ligand 2-[4- Carboxy methyl phenyl azo]-4,5-diphenyl imidazole (4CMeI) The preparation were conducted after fixing the optimum conditions such as (pH) and concentration .UV- visible spectra of these complex solutions were studied for a range of (pH) and concentration which obey lampert-Beers Law.The structures of complexes were deduced according to mole ratio method which were obtained from the spectroscopic studies of the complex solutions .The ratios of metal: ligand obtained were (1:2) for all complexes..(UV-Vis) absorption spectra and The infrared spectra of the chelating complexes were studied ,this may indicate that coordination between the metal ions and our ligand takes place.The conductivity measurements , elemental analysis ,the percentage of some metal ions and the measurements of magnetic susceptibility of the complexes were determined ,Depending on these results , in addition to, We may conclude that the ligand was bidentate Also the proposed geometrical structures of the complexes of Co(II), Ni(II), Zn(II) and Cd (II) ions are octahedral
Six transition metal complexes of Cr (III), Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) were prepared using 1,2-bis -(4-Amino-2,3-dimethyl-1- phenyl-pyrazolinyl)-diimino ethane(L) as ligand. These complexes were characterized by elemental analysis, magnetic susceptibility, UV/VIS and FT-IR spectroscopy. These data showed that the solid complexes of Mn(II), Co(II), Zn(II) were tetrahedral geometry, and Cr(III) was octahedral while the symmetry around Ni(II) and Cu(II) ions with the new ligand were square planar of the formula [ML]Cl2 , M=Ni(II) and Cu(II).
A simple method for the determina
... Show MoreDC glow discharges were generated between a thin cylindrical anode and a flat cathode, streamers are thought to propagate by photo-ionization; the parameters of photo-ionization depend on the He: CO ratio. Therefore we study streamers in He ( 90%, 80% and 70% ) with (10%, 20% and 30%) CO respectively. The streamer diameter is essentially the change by increase for similar voltage and pressure in all He-CO mixtures.
Previous studies on the synthesis and characterization of metal chelates with uracil by elemental analysis, conductivity, IR, UV-Vis, NMR spectroscopy, and thermal analysis were covered in this review article. Reviewing these studies, we found that uracil can be coordinated through the electron pair on the N1, N3, O2, or O4 atoms. If the uracil was a mono-dentate ligand, it will be coordinated by one of the following atoms: N1, N3 or O2. But if the uracil was bi-dentate ligand, it will be coordinated by atoms N1 and O2, N3 and O2 or N3 and O4. However, when uracil forms complexes in the form of polymers, coordination occurs through the following atoms: N1 and N3 or N1 and O4.
Two series of Schiff Bases [VI]n and thiazolidin-4-one derivatives[VII]n were synthesized by many steps starting from cyclization of 4- hydroxyacetophenon with thiourea in iodine to yield 1,3-thiazole compound which was reacted with pentoxy bromide in anhydrous potassium carbonate to converted compound[II] and this reacted with Phenol to yield azo compound[III]. The azo compound reacted with ethyl chloro acetate in basic medium to get a new easter compound[IV] which is converted to their acid hydrazid[V]. The later compound condensation with n-alkoxy benzaldehyde to give new Schiff bases[VI]n . Imine group undergoes addition cyclization with thioglycolic acid to get thiazolidinone compounds[VII]n .Also, two new series of Schi
... Show MoreTwo series of Schiff Bases [VI]n and thiazolidin-4-one derivatives[VII]n were synthesized by many steps starting from cyclization of 4- hydroxyacetophenon with thiourea in iodine to yield 1,3-thiazole compound which was reacted with pentoxy bromide in anhydrous potassium carbonate to converted compound[II] and this reacted with Phenol to yield azo compound[III]. The azo compound reacted with ethyl chloro acetate in basic medium to get a new easter compound[IV] which is converted to their acid hydrazid[V]. The later compound condensation with n-alkoxy benzaldehyde to give new Schiff bases[VI]n . Imine group undergoes addition cyclization with thioglycolic acid to get thiazolidinone compounds[VII]n .Also, two new series of Schiff Bases [XII]n
... Show MoreThe new bidentate Schiff base ligand namely [(E)-N1-(4-methoxy benzylidene) benzene-1, 2-diamine] was prepared from condensation of 4-Methoxy benzaldehyde with O-Phenylene diamine at 1:1 molar ratio in ethanol as a solvent in presence of drops of 48% HBr. The structure of ligand (L) was characterized by, FT-IR, U.V-Vis., 1H-, 13C- NMR spectrophotometer, melting point and elemental microanalysis C.H.N. Metal complexes of the ligand (L) in general molecular formula [M(L)3], where M= Mn(II), Co(II), Ni(II),Cu(II) and Hg(II); L=(C14H14N2O) in ratio (1:3)(Metal:Ligand) were synthesized and characterized by Atomic absorption, FT- IR, U.V-Vis. spectra, molar conductivity, chloride content, melting point and magnetic susceptibility from the above d
... Show MoreThe New Schiff base ligand 4,4'-[(1,1'-Biphenyl)-4,4'-diyl,bis-(azo)-bis-[2-Salicylidene thiosemicarbazide](HL)(BASTSC)and its complexes with Co(II), Ni(II), and Cu(II) were prepared and characterized by elemental analysis, electronic, FTIR, magnetic susceptibility measurements. The analytical and spectral data showed, the stiochiometry of the complexes to be 1:1 (metal: ligand). FTIR spectral data showed that the ligand behaves as dibasic hexadentate molecule with (N, S, O) donor sequence towards metal ions. The octahedral geometry for Co(II), Ni(II), and Cu(II) complexes and non electrolyte behavior was suggested according to the analysis data.