The antibacterial activity of some extracts of A. eupatoria (aqueous and ethanolic) against some pathogenic bacteria (Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli ) and their activity on wound healing in rats , also the presence of some active compounds in both extracts were detected . The results showed that the ethanolic extract was more effective on inhibiting tested bacteria than the aqueous extract . P.aeruginosa was the most resistant bacteria, while highest inhibition zone appeared on E.coli (20 mm) .There was a moderate activity against S.aureus with inhibition zone 15 mm. by using ethanolic extract (10 mg/ml) . The phytochemical analysis for detection of active compounds revealed the presence of Carbohydrates, Glycosides and Tannins in both extracts, while some of compounds such as Terpenoids and Phenolic compounds (flavonoids) were detected in the ethanolic but not in the aqueous extracts. Prepared ethanolic extract ointment presented obvious activity on wound healing activity in rats in contrast with fucidin ointment and aqueous extract ointment, hence the wound healing was completed in l0 days by using the ethanolic extract ointment, while it was 12 days and 14 days for the aqueous extract ointment and fucidin ointment respectively, in comparison with the untreated wound which needed more than 16 days for healing completion.
Indium oxide In2O3 thin films fabricated using thermal evaporation of indium metal in vacuum on a glass substrate at 25oC using array mask, after deposition the indium films have been subjected to thermal oxidation at temperature 400 °C for 1h. The results of prepared Indium oxide reveal the oxidation method as a strong effect on the morphology and optical properties of the samples as fabricated. The band gap (Eg) of In2O3 films at 400 °C is 2.7 eV. Then, SEM and XRD measurements are also used to investigate the morphology and structure of the indium oxide In2O3 thin films. The antimicrobial activity of indium oxide In2O3 thin films was assessed against gram-negative bacterium using inhibition zone of bacteria which improved higher ina
... Show MoreThe olive tree, has been used it is important plant for the time being some of their parts on a large scale in the treatment of gastrointestinal disorders and stimulate circulation . Moreover, it is used as antibacterial material and also to address some of the respiratory system, diabetes, food preservation osteoporosis. This study involved the collection of olive leaves from different areas in Baghdad / Iraq. These leaves have been harvested, wash it, then dried and crushed, where the study aimed to identify the active ingredients and chemical elements in the olive leaf as well as its effect on the action of GOT enzyme .The study showed that the aqueous extracts (cold and hot) of the olive leaves powder are acidic in nature pH values
... Show MoreSeeds, beans, leaves, fruit peel and seeds of five plants (Ferula assa-foetida, Coffea robusta, Olea europaea, Punica granatum and Vitis vinifera, respectively) were extracted with four solvents (distilled water, 80% methanol, 80% acetone and a mixed solvent that included methanol, ethanol, acetone and n-butanol at proportions 7:1:1:1). Such manipulation yielded 20 extracts, which were phytochemically analyzed for total polyphenols (TP) and flavonoids (TF). The DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity (RSA) and DPP-4 (dipeptidyl peptidase-4) relative inhibition activity (RIA) were also assessed for each extract. The results revealed that mixed solvent extract of V.
... Show MoreFour new complexes of Pd(II), Pt(II) and Pt(IV) with DMSO solution of the ligand 8-[(4-nitrophenyl)azo]guanine (L) have been synthesized. Reaction of the ligand with Pd(II) at different pH gave two new complexes, at pH=8, a complex of the formula [Pd(L)2]Cl2.DMSO (1) was formed, while at pH=4.5,the complex[Pd(L)3]Cl2.DMSO (2) was obtained. Meanwhile, the reaction of the ligand with Pt(II) and Pt(IV) revealed new complexes with the formulas[Pt(L)2]Cl2.DMSO (3)and [Pt(L)3]Cl4.DMSO (4) at pH 7.5 and 6 respectively.
All the preparations were performed after fixing the optimum pH and concentration. The effect of time on the stability of these complexes was checked. The stoichiometry of the complexes was determined by the mole ratio and Job
The inhibitive action of Reactive Red (RR31) dye against corrosion of carbon steel in 1M acetic acid solution has been studied using gravimetric method at temperature ranged (288-318)K. The antibacterial activity for the different concentrations of RR31 dye against different bacterial species was studied. The experimental data indicates that this dye acts as a potential inhibitor for carbon-steel in acetic acid medium and the protection efficiency increase with increasing (RR31) dye. The adsorption of (RR31) dye on the carbon steel surface was found to follow Langmuir adsorption isotherm. Thermodynamic data for the adsorption process such as Gibbs free energy change ∆Gads, enthalpy change ∆Hads, and entropy change ∆Sads were estima
... Show MoreBacterial water pollution is a genuine general wellbeing concern since it causes various maladies. Antimicrobial nanofibers can be integrated by incorporating nanobiocides, for example, silver nanoparticles into nanofibers. Nylon 6 was dissolved in formic acid at a concentration of (25 wt. %) and tough antibacterial (AgNO3/Nylon) nanofibers were produced utilizing electrospinning system. Polymer solution was tested before accomplishing electrospinning process to acquire its surface tension, electric conductivity and viscosity, where every one of those parameters increased relatively with increasing concentration of (AgNO3) additions. SEM and EDX spectra were utilized to focus on the morphology, surface elemental mem
... Show MoreIn this study, (50–110 nm) magnetic iron oxide (α-Fe2O3) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV–VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results sh
... Show More