In this paper the research introduces a new definition of a fuzzy normed space then the related concepts such as fuzzy continuous, convergence of sequence of fuzzy points and Cauchy sequence of fuzzy points are discussed in details.
The concept of a small f- subm was presented in a previous study. This work introduced a concept of a hollow f- module, where a module is said to be hollow fuzzy when every subm of it is a small f- subm. Some new types of hollow modules are provided namely, Loc- hollow f- modules as a strength of the hollow module, where every Loc- hollow f- module is a hollow module, but the converse is not true. Many properties and characterizations of these concepts are proved, also the relationship between all these types is researched. Many important results that explain this relationship are demonstrated also several characterizations and properties related to these concepts are given.
In this research for each positive integer integer and is accompanied by connecting that number with the number of Bashz Attabq result any two functions midwives to derive a positive integer so that there is a point
In this work the design and application of a fuzzy logic controller to DC-servomotor is investigated. The proposed strategy is intended to improve the performance of the original control system by use of a fuzzy logic controller (FLC) as the motor load changes. Computer simulation demonstrates that FLC is effective in position control of a DC-servomotor comparing with conventional one.
The purpose of this paper is to shed light on the concept of fuzzy logic ,its application in linguistics ,especially in language teaching and the fuzziness of some lexical items in English.
Fuzziness means that the semantic boundaries of some lexical items are indefinite and ideterminate.Fuzzy logic provides a very precise approach for dealing with this indeterminacy and uncertainty which grows (among other reasons) out of human behavior and the effect of society.
The concept of fuzzy logic has emerged in the development of the theory of fuzzy set by Lotfi Zadeh(a professor of computer science at the university of California) in 1965.It can be thought of as the application side of the fuzzy set theory. In linguistics, few scholars
In this paper, we introduce the concept of cubic bipolar-fuzzy ideals with thresholds (α,β),(ω,ϑ) of a semigroup in KU-algebra as a generalization of sets and in short (CBF). Firstly, a (CBF) sub-KU-semigroup with a threshold (α,β),(ω,ϑ) and some results in this notion are achieved. Also, (cubic bipolar fuzzy ideals and cubic bipolar fuzzy k-ideals) with thresholds (α,β),(ω ,ϑ) are defined and some properties of these ideals are given. Relations between a (CBF).sub algebra and-a (CBF) ideal are proved. A few characterizations of a (CBF) k-ideal with threshol
... Show MoreIn this paper, we introduce and study new classes of soft open sets in soft bitopological spaces called soft (1,2)*-omega open sets and weak forms of soft (1,2)*-omega open sets such as soft (1,2)*-α-ω-open sets, soft (1,2)*-pre-ω-opensets, soft (1,2)*-b-ω-open sets, and soft (1,2)*-β-ω-open sets. Moreover; some basic properties and the relation among these concepts and other concepts also have been studied.
In real situations all observations and measurements are not exact numbers but more or less non-exact, also called fuzzy. So, in this paper, we use approximate non-Bayesian computational methods to estimate inverse Weibull parameters and reliability function with fuzzy data. The maximum likelihood and moment estimations are obtained as non-Bayesian estimation. The maximum likelihood estimators have been derived numerically based on two iterative techniques namely “Newton-Raphson†and the “Expectation-Maximization†techniques. In addition, we provide compared numerically through Monte-Carlo simulation study to obtained estimates of the parameters and reliability function i
... Show Morewe applied the direct product concept on the notation of intuitionistic fuzzy semi d-ideals of d-algebra with investigation some theorems, and also, we study the notation of direct product of intuitionistic fuzzy topological d-algebra.