The study deals with reactivity insertion linear and non linear and/or Ramp reactivity expressed as a polynomial in time in the presence of two Feedback mechanisms, using the neutronic-thermohydraulic coupling in order to predict the neutron behavior as a function of time in terms of reactor power. Also, a comparative study has been achieved in the case of the presence of the feedback mechanisms. Insertion of Ramp reactivities in terms of polynomial in time to study the behavior of power and reactivity as a function of time in the presence of two feedback mechanisms (fuel and coolant) has been carried out and the results are displayed as plots, and showed this results corresponding with international results. The present study shows that the simulation of neutron time behavior is a vital tool to predict the behavior of reactivity and/or power as a function of time in case of insertion of negative or positive and/or Ramp reactivities in power reactor core for the case including feedback mechanism. Also, the simulation may be considered a unique technique to predict unexpected incident and/or accident that may occur in reactor power core in case of the availability of accurated input data.
The objectives of this study revolve around identifying the extent of funding impact on the future of the printed Iraqi press, and whether it threatens their chances of survival, stating the extent of technological development on the income of the printed newspaper, and identifying the causes of the financial crisis on the newspaper. This research is classified as descriptive research, and the researcher used the survey method, and adopted the questionnaire of the views of the contactors, in five Iraqi newspapers (morning - extent - time - the way of the people - the call). The research community included (68) respondents, whereby the comprehensive inventory method was used to define the research community, and the researcher used t
... Show MoreThe objectives of this study revolve around identifying the extent of funding impact on the future of the printed Iraqi press, and whether it threatens their chances of survival, stating the extent of technological development on the income of the printed newspaper, and identifying the causes of the financial crisis on the newspaper.
This research is classified as descriptive research, and the researcher used the survey method, and adopted the questionnaire of the views of the contactors, in five Iraqi newspapers (morning - extent - time - the way of the people - the call).
The research community included (68) respondents, whereby the comprehensive inventory method was used to define the research community, and the researcher used
Abstract: This paper presents the results of the structural and optical analysis of CdS thin films prepared by Spray of Pyrolysis (SP) technique. The deposited CdS films were characterized using spectrophotometer and the effect of Sulfide on the structural properties of the films was investigated through the analysis of X-ray diffraction pattern (XRD). The growth of crystal became stronger and more oriented as seen in the X-ray diffraction pattern. The studying of X-ray diffraction showed that; all the films have the hexagonal structure with lattice constants a=b=4.1358 and c=6.7156A°, the crystallite size of the CdS thin films increases and strain (ε) as well as the dislocation density (δ) decreases. Also, the optical properties of the
... Show MoreGeomechanical modelling and simulation are introduced to accurately determine the combined effects of hydrocarbon production and changes in rock properties due to geomechanical effects. The reservoir geomechanical model is concerned with stress-related issues and rock failure in compression, shear, and tension induced by reservoir pore pressure changes due to reservoir depletion. In this paper, a rock mechanical model is constructed in geomechanical mode, and reservoir geomechanics simulations are run for a carbonate gas reservoir. The study begins with assessment of the data, construction of 1D rock mechanical models along the well trajectory, the generation of a 3D mechanical earth model, and runni
CdS films were prepared by thermal evaporation technique at thickness 1 µm on glass substrates and these films were doped with indium (3%) by thermal diffusion method. The electrical properties of these have been investigated in the range of diffusion temperature (473-623 K)> Activation energy is increased with diffusion temperature unless at 623 K activation energy had been decreased. Hall effect results have shown that all the films n-type except at 573 and 623 K and with increase diffusion temperature both of concentration and mobility carriers were increased.
Sb2S3 thin films have been prepared by chemical bath deposition on a glas sub Absorbance and transmittance spectra were recorded in the wavelength range (30-900) nm. The effects of thickness on absorption coefficient, reflectance, refractive index, extinction coefficient, real and imaginary parts of dielectric constant were estimated. It was found that the reflectivity, absorption coefficient , extinction coefficient, real part of dielectric constant and refractive index, all these parameters decrease as the thickness increased, while the imaginary part of the dielectric constant increase as the thickness incre
... Show MoreIn this article, the influence of group nano transition metal oxides such as {(MnO2), (Fe2O3) and (CuO)} thin films on the (ZnO-TiO2) electric characteristics have been analyzed. The prepared films deposited on glass substrate laser Nd-YAG with wavelength (ℷ =1064 nm) ,energy of (800mJ) and number of shots (400). The density of the film was found to be (200 nm) at room temperature (RT) and annealing temperature (573K).Using DC Conductivity and Hall Effect, we obtained the electrical properties of the films. The DC Conductivity shows that that the activation energies decrease while the σRT at annealing temperature with different elements increases the formation of mixed oxides. The Hall effect, the elec
... Show MoreThis paper presents the study and analysis, analytically and numerical of circular cylindrical shell pipe model, under variable loads, transmit fluid at the high velocity state (fresh water). The analytical analysis depended on the energy observation principle (Hamilton Principle), where divided all energy in the model to three parts , strain energy, kinetic energy and transmitted energy between flow and solid (kinetic to potential energy). Also derive all important equations for this state and approach to final equation of motion, free and force vibration also derived. the relations between the displacement of model function of velocity of flow, length of model, pipe thickness, density of flowed with location coordinate x-axis and angle
... Show MoreFractal image compression gives some desirable properties like fast decoding image, and very good rate-distortion curves, but suffers from a high encoding time. In fractal image compression a partitioning of the image into ranges is required. In this work, we introduced good partitioning process by means of merge approach, since some ranges are connected to the others. This paper presents a method to reduce the encoding time of this technique by reducing the number of range blocks based on the computing the statistical measures between them . Experimental results on standard images show that the proposed method yields minimize (decrease) the encoding time and remain the quality results passable visually.