Overlapped have been prepared from epoxy resin material added to carbon Nanotube and percentages weight (0.1, 0.05, 0.01) % Studied the mechanical properties of the composite (bending, tensile an d hardness) has been found that the Flexural and tensile modulus of the composites were higher than the pure epoxy resin this may be due to the high mechanical strength of carbon nano tube (CNT). The hardness of the epoxy carbon Nanotube composites increased and the reason is due to increased overlap and stacking between the additives and material basis, which reduces the movement of polymer molecules leading to increased resistance to scratching material and cutting, will become more resistance to plastic deformation.
Introduction: The present study was performed to evaluate the influence of a 1064 nm fiber laser on shear bond strength (SBS) at the interface of titanium and resin cement. Methods: Forty titanium discs of 6 mm × 3 mm (diameter and thickness respectively) were categorized into four groups (n=10): control group without any surface treatment and three groups treated with a fiber laser with 81 ns pulse duration, 30 kHz frequency, 10000 mm/s scanning speed, 0.05 mm spot size, and different average power values (3, 5 and 7 W) depending on the tested group. Titanium disc characterization was performed by the scanning electron microscope (SEM) and surface roughness tester. Phase analysis was achieved using an X-ray diffractometer (XRD). F
... Show MoreBuckling analysis of composite laminates for critical thermal (uniform and linear) and mechanical loads is reported here. The objective of this work is to carry out theoretical investigation of buckling analysis of composite plates under thermomechanical loads, and experimental investigation under mechanical loads. The analytical investigation involved certain mathematical preliminaries, a study of equations of orthotropic elasticity for classical laminated plate theory (CLPT), higher order shear deformation plate theory (HSDT) , and numerical analysis (Finite element method), then the equation of motion are derived and solved using Navier method and Levy method for symmetric and anti-symmetric cross-ply and angle-ply laminated plates t
... Show MoreThe present study focused mainly on the vibration analysis of composite laminated plates subjected to
thermal and mechanical loads or without any load (free vibration). Natural frequency and dynamic
response are analyzed by analytical, numerical and experimental analysis (by using impact hammer) for
different cases. The experimental investigation is to manufacture the laminates and to find mechanical
and thermal properties of glass-polyester such as longitudinal, transverse young modulus, shear modulus,
longitudinal and transverse thermal expansion and thermal conductivity. The vibration test carried to
find the three natural frequencies of plate. The design parameters of the laminates such as aspect ratio,
thickness
In the present paper a low cost mechanical vibration shaker of rotating unbalanced type with uniaxial shaking table was designed and constructed in an attempt to provide opportunities for experimental testing and application of vibration in experimental modal analysis, stress relief of weldments, effect of vibration on heat transfer and seismic testing of civil engineering structures. Also, it provides unexpressive solution to enhance the knowledge and technical skills of students in mechanical vibration laboratory. The shaker consists of a five main parts shaker frame, shaker table, flexible support, drive motor, and eccentricity mechanism. The experimental results show that the amplitude of the shaker is increased with increasing the f
... Show MoreThe focus of this work is on systematically understanding the effects of packing density of the sand grains on both the internal and bulk mechanical properties for strip footing interacting with granular soil. The studies are based on particle image velocimetry (PIV) method, coupled with a high resolution imaging camera. This provides valuable new insights on the evolution of slip planes at grain-scale under different fractions of the ultimate load. Furthermore, the PIV based results are compared with finite element method simulations in which the experimentally characterised parameters and constitutive behaviour are fed as an input, and a good level of agreements are obtained. The reported results would serve to the practicing engineers, r
... Show MoreA precise evaluation of caries excavation endpoint is essential in clinical and laboratory investigations. Caries invasion differentiates dentin into structurally altered layers. This study assessed these changes using Raman spectroscopy and Vickers microhardness. Ten permanent molars with occlusal and proximal carious lesions were assessed and compared at 130 points utilizing four Raman spectroscopic peaks: phosphate v1 at 960 cm−1, amide I (1650 cm−1), amide III (1235 cm−1) and the C-H bond of the pyrrolidine ring (1450 cm−1). The phosphate-to-amide I peak ratio and collagen integrity peak ratio (amide III: C-H bond) of carious zones were calculated and compared in both lesions. The former ratio was correlated to 130 Vicke
... Show MoreElectromechanical actuators are used in a wide variety of aerospace applications such as missiles, aircrafts and spy-fly etc. In this work a linear and nonlinear fin actuator mathematical model has been developed and its response is investigated by developing an algorithm for the system using MATLAB. The algorithm used to the linear model is the state space algorithm while the algorithm used to the nonlinear model is the discrete algorithm. The huge moment constant is varied from (-3000 to 3000) and the damping ratio is varied from (0.4 to 0.8).
The comparison between linear and nonlinear fin actuator response results shows that for linear model, the maximum overshoot is about 10%,
... Show MoreIn this work, studying the effect of ethylenediamine as a corrosion inhibitor was investigated for carbon steel in aerated HCl solution in range of 0.1-1N under dynamic conditions, i.e., rotational velocity of 400–1200 rpm in the temperature range 35 – 65 ºC. Weight loss method was employed in absence and presence of the inhibitor as an adsorption type in concentration range 1000 – 5000 ppm using rotating cylinder specimens. The experimental results showed that corrosion rate in absence and presence of inhibitor is increased with increasing temperature, rotational velocity and concentration of acid. It is decreased with increasing inhibitor concentration for the whole range of temperature, rotational velocity and concentrati
... Show MoreThis work focuses on the use of biologically produced activated carbon for improving the physi-co-chemical properties of water samples obtained from the Tigris River. An eco-friendly and low-cost activated carbon was prepared from the Alhagi plant using potassium hydroxide (KOH) as an impregnation agent. The prepared activated carbon was characterised using Fourier-transform infrared spectroscopy to determine the functional groups that exist on the raw material (Alhagi plant) and Alhagi activated carbon (AAC). Scanning electron microscope–energy-dispersive X-ray spectroscope was also used to investigate the surface shape and the elements that compose the powder. Brunauer–Emmett–Teller surface area analysis was used to evaluate the spe
... Show More