Evaporation is one of the major components of the hydrological cycle in the nature, thus its accurate estimation is so important in the planning and management of the irrigation practices and to assess water availability and requirements. The aim of this study is to investigate the ability of fuzzy inference system for estimating monthly pan evaporation form meteorological data. The study has been carried out depending on 261 monthly measurements of each of temperature (T), relative humidity (RH), and wind speed (W) which have been available in Emara meteorological station, southern Iraq. Three different fuzzy models comprising various combinations of monthly climatic variables (temperature, wind speed, and relative humidity) were developed to evaluate effect of each of these variables on estimation process. Two error statistics namely root mean squared error and coefficient of determination were used to measure the performance of the developed models. The results indicated that the model, whose input variables are T, W, and RH, perform the best for estimating evaporation values. In addition, the model which is dominated by (T) is significantly and distinctly helps to prove the predictive ability of fuzzy inference system. Furthermore, agreements of the results with the observed measurements indicate that fuzzy logic is adequate intelligent approach for modeling the dynamic of evaporation process.
This research includes the study of dual data models with mixed random parameters, which contain two types of parameters, the first is random and the other is fixed. For the random parameter, it is obtained as a result of differences in the marginal tendencies of the cross sections, and for the fixed parameter, it is obtained as a result of differences in fixed limits, and random errors for each section. Accidental bearing the characteristic of heterogeneity of variance in addition to the presence of serial correlation of the first degree, and the main objective in this research is the use of efficient methods commensurate with the paired data in the case of small samples, and to achieve this goal, the feasible general least squa
... Show MoreThis study includes the application of non-parametric methods in estimating the conditional survival function of the Beran method using both the Nadaraya-Waston and the Priestley-chao weights and using data for Interval censored and Right censored of breast cancer and two types of treatment, Chemotherapy and radiation therapy Considering age is continuous variable, through using (MATLAB) use of the (MSE) To compare weights The results showed a superior weight (Nadaraya-Waston) in estimating the survival function and condition of Both for chemotherapy and radiation therapy.
The purpose of this research is to investigate the impact of corrosive environment (corrosive ferric chloride of 1, 2, 5, 6% wt. at room temperature), immersion period of (48, 72, 96, 120, 144 hours), and surface roughness on pitting corrosion characteristics and use the data to build an artificial neural network and test its ability to predict the depth and intensity of pitting corrosion in a variety of conditions. Pit density and depth were calculated using a pitting corrosion test on carbon steel (C-4130). Pitting corrosion experimental tests were used to develop artificial neural network (ANN) models for predicting pitting corrosion characteristics. It was found that artificial neural network models were shown to be
... Show MoreA total of 589 fishes, belonging to 23 species were collected from eight different localities
in north and mid Iraq during 1993. The parasitological inspection of such fishes revealed the
presence of 59 parasite species and two fungi. Among such parasites, five monogenetic
trematodes were recorded on the gills of some fishes for the first time in Iraq. These
included:- Ancyrocephalus vanbenedenii on Liza abu from Tigris river at Al-Zaafaraniya,
south of Baghdad; Dactylogyrus anchoratus on Cyprinus carpio from Tigris river at Al –
Zaafaranya D. minutus on C. carpio from both Tigris river at Al-Zaafaraniya and Euphrates
river at Al-Qadisiya dam lake; Discocotyle sagittata on L. abu from both the drainage system
at
In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.
Pareto distribution is used in many economic, financial and social applications. This distribution is used for the study of income and wealth and the study of settlement in cities and villages and the study of the sizes of oil wells as well as in the field of communication through the speed of downloading files from the Internet according to their sizes. This distribution is used in mechanical engineering as one of the distributions of models of failure, stress and durability. Given the practical importance of this distribution on the one hand, and the scarcity of sources and statistical research that deal with it, this research touched on some statistical characteristics such as derivation of its mathematical function , probability density
... Show MoreThe fuzzy assignment models (FAMs) have been explored by various literature to access classical values, which are more precise in our real-life accomplishment. The novelty of this paper contributed positively to a unique application of pentagonal fuzzy numbers for the evaluation of FAMs. The new method namely Pascal's triangle graded mean (PT-GM) has presented a new algorithm in accessing the critical path to solve the assignment problems (AP) based on the fuzzy objective function of minimising total cost. The results obtained have been compared to the existing methods such as, the centroid formula (CF) and centroid formula integration (CFI). It has been demonstrated that operational efficiency of this conducted method is exquisitely develo
... Show MoreEnergy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the
... Show MoreThe Compressional-wave (Vp) data are useful for reservoir exploration, drilling operations, stimulation, hydraulic fracturing employment, and development plans for a specific reservoir. Due to the different nature and behavior of the influencing parameters, more complex nonlinearity exists for Vp modeling purposes. In this study, a statistical relationship between compressional wave velocity and petrophysical parameters was developed from wireline log data for Jeribe formation in Fauqi oil field south Est Iraq, which is studied using single and multiple linear regressions. The model concentrated on predicting compressional wave velocity from petrophysical parameters and any pair of shear waves velocity, porosity, density, a
... Show More