Preferred Language
Articles
/
bsj-1343
Using fuzzy logic for estimating monthly pan evaporation from meteorological data in Emara/ South of Iraq
...Show More Authors

Evaporation is one of the major components of the hydrological cycle in the nature, thus its accurate estimation is so important in the planning and management of the irrigation practices and to assess water availability and requirements. The aim of this study is to investigate the ability of fuzzy inference system for estimating monthly pan evaporation form meteorological data. The study has been carried out depending on 261 monthly measurements of each of temperature (T), relative humidity (RH), and wind speed (W) which have been available in Emara meteorological station, southern Iraq. Three different fuzzy models comprising various combinations of monthly climatic variables (temperature, wind speed, and relative humidity) were developed to evaluate effect of each of these variables on estimation process. Two error statistics namely root mean squared error and coefficient of determination were used to measure the performance of the developed models. The results indicated that the model, whose input variables are T, W, and RH, perform the best for estimating evaporation values. In addition, the model which is dominated by (T) is significantly and distinctly helps to prove the predictive ability of fuzzy inference system. Furthermore, agreements of the results with the observed measurements indicate that fuzzy logic is adequate intelligent approach for modeling the dynamic of evaporation process.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Choosing the best method for estimating the survival function of inverse Gompertz distribution by using Integral mean squares error (IMSE)
...Show More Authors

In this research , we study the inverse Gompertz distribution (IG) and estimate the  survival function of the distribution , and the survival function was evaluated using three methods (the Maximum likelihood, least squares, and percentiles estimators) and choosing the best method estimation ,as it was found that the best method for estimating the survival function is the squares-least method because it has the lowest IMSE and for all sample sizes

View Publication Preview PDF
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Choosing the best method for estimating the survival function of inverse Gompertz distribution by using Integral mean squares error (IMSE)
...Show More Authors

In this research , we study the inverse Gompertz distribution (IG) and estimate the  survival function of the distribution , and the survival function was evaluated using three methods (the Maximum likelihood, least squares, and percentiles estimators) and choosing the best method estimation ,as it was found that the best method for estimating the survival function is the squares-least method because it has the lowest IMSE and for all sample sizes

View Publication
Crossref
Publication Date
Wed Aug 25 2021
Journal Name
2021 7th International Conference On Contemporary Information Technology And Mathematics (iccitm)
Anomaly Detection in Flight Data Using the Naïve Bayes Classifier
...Show More Authors

View Publication
Scopus (8)
Crossref (6)
Scopus Crossref
Publication Date
Sun Mar 13 2011
Journal Name
Baghdad Science Journal
Distribution Of Some Heavy Metals In Water,Sediment & Fish Cyprinus carpio in Euphrates River Near Al- Nassiriya City Center South Iraq .
...Show More Authors

The heavy metals Cd, Cu, Fe, pb, and Zn were determined in dissolved and particulate phases of the water,in addition to exchangeable and residual phases of the sediment and in the selected organs of the fish Cyprinus carpio collected from the Euphrates River near Al-Nassiriya city center south of Iraq during the summer period / 2009 .Also sediment texture and total organic carbon(TOC) were measured. Analysis emploing a flam Atomic Absorption Spectrophotometers . The mean regional concentrations of the heavy metals in dissolved (µg/l) and particulate phases (µg/gm) dry weight were Cd (0.15,16.13) ,Cu (0.59,24.48) ,Fe (726,909.4) ,Pb (0.20, 49.95) and Zn (2.5,35.62) respectively,and those for exchangeable and residual phases of the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Different Methods for Estimating Location Parameter & Scale Parameter for Extreme Value Distribution
...Show More Authors

      In this study, different methods were used for estimating location parameter  and scale parameter for extreme value distribution, such as maximum likelihood estimation (MLE) , method of moment  estimation (ME),and approximation  estimators based on percentiles which is called white method in estimation, as the extreme value distribution is one of exponential distributions. Least squares estimation (OLS) was used, weighted least squares estimation (WLS), ridge regression estimation (Rig), and adjusted ridge regression estimation (ARig) were used. Two parameters for expected value to the percentile  as estimation for distribution f

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Sep 30 2015
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Correlation of Penetration Rate with Drilling Parameters For an Iraqi Field Using Mud Logging Data
...Show More Authors

This paper provides an attempt for modeling rate of penetration (ROP) for an Iraqi oil field with aid of mud logging data. Data of Umm Radhuma formation was selected for this modeling. These data include weight on bit, rotary speed, flow rate and mud density. A statistical approach was applied on these data for improving rate of penetration modeling. As result, an empirical linear ROP model has been developed with good fitness when compared with actual data. Also, a nonlinear regression analysis of different forms was attempted, and the results showed that the power model has good predicting capability with respect to other forms.

View Publication Preview PDF
Publication Date
Mon Aug 27 2018
Journal Name
Elibrary
ANALYSIS OF PSYCHOPHYSICAL COMPETENCY FOR INDIVIDUAL GAME DISCIPLINES IN FEMALE STUDENTS FROM IRAQ REPUBLIC
...Show More Authors

The national educational systems both in the Russian Federation and Iraq Republic have to adjust the training programs to duly prepare the pedagogical university students for the modern challenges and situations on the market of educational services. For success of the service, the education specialists have to fully mobilize their physical, mental and emotional resources and persistently advance their skills and knowledge using the relevant online education courses; practical research conferences; persistent self-education to master theoretical fundamentals of the modern physical education and sport service; and be active in trainings and competitions in their vocational individual game sports including badminton, table tennis and tennis.

... Show More
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Engineering Science And Technology
Evaluating water quality index of al Hammar Marsh, south of Iraq with the application of GIS technique
...Show More Authors

Scopus (18)
Scopus
Publication Date
Wed Jan 10 2018
Journal Name
International Journal Of Science And Research (ijsr)
Results for Fuzzy Casual Stringy Differential Dissimilarity
...Show More Authors

Publication Date
Fri Nov 29 2024
Journal Name
The Iraqi Geological Journal
Data Driven Approach for Predicting Pore Pressure of Oil and Gas Wells, Case Study of Iraq Southern Oilfields
...Show More Authors

Precise forecasting of pore pressures is crucial for efficiently planning and drilling oil and gas wells. It reduces expenses and saves time while preventing drilling complications. Since direct measurement of pore pressure in wellbores is costly and time-intensive, the ability to estimate it using empirical or machine learning models is beneficial. The present study aims to predict pore pressure using artificial neural network. The building and testing of artificial neural network are based on the data from five oil fields and several formations. The artificial neural network model is built using a measured dataset consisting of 77 data points of Pore pressure obtained from the modular formation dynamics tester. The input variables

... Show More
View Publication
Scopus Crossref