The quantitative determination of the estrogen E2, Progestron P4 & follicle stimulating hormones FSH in the serums of Albino mice used in the experiments & treated by crude alcoholic extracted 95% of the seeds & leaves of Apium graveolens was a significant increase in the concentration of estrogen of different kinds of the extracted in comparison with the values of the coefficient of the control group, that is the study recorded a significant increase of the concentration of estrogen; it was the highest in the mice which was administrated by the methanolic extracted 95%, then it was less in the mouse which was administrated by the ethanolic extracted., and it was the least in the mice which were administrated by the crude ethanolic-methanoloic extracted of the seeds of Apium graveolens; while the increase of the concentration of estrogen of different crude alcoholic extracted leaves of Apium graveolens was the highest than the extracted of the seeds, & it was less concentration in the mice which were administrated by the methanolic extracted 95%, & then it was the least in the mice which were administrated by the crude ethanolic-methanolic extracted leaves of Apium graveolens in comparison with the values of the control group. Further, the plant extracted created a significant increase of the concentration of progestron P4; the statistics analysis recorded that the concentration of progestron was the highest in the mice which were administrated by the methanolic extracted 95%, then it was less in the mice which were administrated by the ethanolic extracted 95%, and the least in the mice which were administrated by the crude ethanolic-methanolic extracted of the seeds of apium graveolens whereas, a significant increase of the concentration of progrstrone was recorded in the leaves of Apium graveolens as follows: it was the highest in the mice which were administrated by the ethanolic extracted 95%, then it was less in the mice which were administrated by the crude methanolic extracted 95%, and it was the least in the mice which were administrated by the crude ethnolic-methanolic extracted in comparison with the coefficient of control group. The study also proved that there was a significant increase of the concentration of the follicle stimulating hormone FSH whose greatest concentration in the mice which was administrated by the crude ethanolic-methanolic for the seeds of Apim graveolens, it was less concentration in the mice which was administrated by crude methanolic extracted 95% of the seeds, and it was the least in the mice which was administrated by the methanolic extracted 95% of the leaves of Apium graveolens in comparison with the concentrations of the coefficient of the control group. While, the results recorded a significant decrease of the FSH in the mice which was administrated by the crude ethanolic extracted of the seeds & leaves of Apium graveolens a highest decrease, it was less concentration in the mice which was administrated by the crude ethanolic-methanolic extracted of the leaves of apium graveolens, in comparison with the concentration in the control group.
Fibromuscular dysplasia (FMD) is a noninflammatory and nonatherosclerotic arteriopathy that is characterized by irregular cellular proliferation and deformed construction of the arterial wall that causes segmentation, constriction, or aneurysm in the intermediate-sized arteries. The incidence of FMD is 0.42–3.4%, and the unilateral occurrence is even rarer. Herein, we report a rare case of a localized extracranial carotid unilateral FMD associated with recurrent transient ischemic attacks (TIAs) treated by extracranial-intracranial bypass for indirect revascularization. The specific localization of the disease rendered our case unique.
The esterification reaction of ethyl alcohol and acetic acid catalyzed by the ion exchange resin, Amberlyst 15, was investigated. The experimental study was implemented in an isothermal batch reactor. Catalyst loading, initial molar ratio, mixing time and temperature as being the most effective parameters, were extensively studied and discussed. A maximum final conversion of 75% was obtained at 70°C, acid to ethyl alcohol mole ratio of 1/2 and 10 g catalyst loading. Kinetic of the reaction was correlated with Langmuir-Hanshelwood model (LHM). The total rate constant and the adsorption equilibrium of water as a function of the temperature was calculated. The activation energies were found to be as 113876.9 and -49474.95 KJ per Kmol of ac
... Show MoreAn intelligent software defined network (ISDN) based on an intelligent controller can manage and control the network in a remarkable way. In this article, a methodology is proposed to estimate the packet flow at the sensing plane in the software defined network-Internet of Things based on a partial recurrent spike neural network (PRSNN) congestion controller, to predict the next step ahead of packet flow and thus, reduce the congestion that may occur. That is, the proposed model (spike ISDN-IoT) is enhanced with a congestion controller. This controller works as a proactive controller in the proposed model. In addition, we propose another intelligent clustering controller based on an artificial neural network, which operates as a reactive co
... Show MoreData mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu
... Show MoreIn digital images, protecting sensitive visual information against unauthorized access is considered a critical issue; robust encryption methods are the best solution to preserve such information. This paper introduces a model designed to enhance the performance of the Tiny Encryption Algorithm (TEA) in encrypting images. Two approaches have been suggested for the image cipher process as a preprocessing step before applying the Tiny Encryption Algorithm (TEA). The step mentioned earlier aims to de-correlate and weaken adjacent pixel values as a preparation process before the encryption process. The first approach suggests an Affine transformation for image encryption at two layers, utilizing two different key sets for each layer. Th
... Show MoreAssessing the accuracy of classification algorithms is paramount as it provides insights into reliability and effectiveness in solving real-world problems. Accuracy examination is essential in any remote sensing-based classification practice, given that classification maps consistently include misclassified pixels and classification misconceptions. In this study, two imaginary satellites for Duhok province, Iraq, were captured at regular intervals, and the photos were analyzed using spatial analysis tools to provide supervised classifications. Some processes were conducted to enhance the categorization, like smoothing. The classification results indicate that Duhok province is divided into four classes: vegetation cover, buildings,
... Show MoreThe present study was carried out to determine the bacterial isolates and study their antimicrobial susceptibility in case of burned wound infections. 70 burn wound swabs were taken from patients, who presented invasive burn wound infection from both sex and average age of 3-58 years, admitted to teaching medical Al- Kendi hospital from October 2007 to June 2008. Pseudomonas aeruginosa was found to be the most common isolate (48.9%) followed by Staphylococcus aureus (24.4%), Citrobacter braakii (13.3%), Enterobacter spp. (11.1%), Coagulase-negative Staphylococci (11.1%), Proteus vulgaris (6.66%), Corynebacterium spp. (6.66%), Micrococcus (6.66%), Proteus mirabilis (4.44%), Enterococcus faecalis (4.44%), E.coli (4.44%), Klebsiella spp. (2.22
... Show MoreText based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.
... Show MoreIn this paper, two new simple, fast and efficient block matching algorithms are introduced, both methods begins blocks matching process from the image center block and moves across the blocks toward image boundaries. With each block, its motion vector is initialized using linear prediction that depending on the motion vectors of its neighbor blocks that are already scanned and their motion vectors are assessed. Also, a hybrid mechanism is introduced, it depends on mixing the proposed two predictive mechanisms with Exhaustive Search (ES) mechanism in order to gain matching accuracy near or similar to ES but with Search Time ST less than 80% of the ES. Also, it offers more control capability to reduce the search errors. The experimental tests
... Show MoreIn this paper, a new method of selection variables is presented to select some essential variables from large datasets. The new model is a modified version of the Elastic Net model. The modified Elastic Net variable selection model has been summarized in an algorithm. It is applied for Leukemia dataset that has 3051 variables (genes) and 72 samples. In reality, working with this kind of dataset is not accessible due to its large size. The modified model is compared to some standard variable selection methods. Perfect classification is achieved by applying the modified Elastic Net model because it has the best performance. All the calculations that have been done for this paper are in