A number of compression schemes were put forward to achieve high compression factors with high image quality at a low computational time. In this paper, a combined transform coding scheme is proposed which is based on discrete wavelet (DWT) and discrete cosine (DCT) transforms with an added new enhancement method, which is the sliding run length encoding (SRLE) technique, to further improve compression. The advantages of the wavelet and the discrete cosine transforms were utilized to encode the image. This first step involves transforming the color components of the image from RGB to YUV planes to acquire the advantage of the existing spectral correlation and consequently gaining more compression. DWT is then applied to the Y, U and V color space information giving the approximate and the detail coefficients. The detail coefficients are quantized, coded using run length encoding (RLE) and SRLE. The approximate coefficients were coded using DCT, since DCT has superior compression performance when image information has poor power concentration in high frequency areas. This output is also quantized, coded using RLE and SRLE. Test results showed that the proposed DWT DCT SRLE system proved to have encouraging results in terms of Peak Signal-to-Noise Ratio (PSNR), Compression Factor (CF) and execution time when compared with some DWT based image compressions.
Thin films of cadmium sulphoselenide (CdSSe) have been prepared by a thermal evaporation method on glass substrate, and with pressure of 4x10-5 mbar. The optical constants such as (refractive index n, dielectric constant ?i,r and Extinction coefficient ?) of the deposition films were obtained from the analysis of the experimental recorded transmittance spectral data. The optical band gap of (CdSSe) films is calculate from (?h?)2 vs. photon energy curve. CdSSe films have a direct energy gap, and the values of the energy gap were found to increase when increasing annealing temperature. The band gap of the films varies from 1.68 – 2.39 eV.
A fuzzy logic approach (FLA) application in the process of stud arc welding environment was implemented under the condition of fuzziness input data. This paper is composed of the background of FLA, related research work review and points for developing in stud welding manufacturing. Then, it investigates thecase of developingstud arc welding process on the controversial certaintyof available equipment and human skills.Five parameters (welding time, sheet thickness, type of coating, welding current and stud shape) were studied.A pair of parameter was selected asiteration whichis welding current and welding time and used fo
... Show MoreThe using of the parametric models and the subsequent estimation methods require the presence of many of the primary conditions to be met by those models to represent the population under study adequately, these prompting researchers to search for more flexible models of parametric models and these models were nonparametric models.
In this manuscript were compared to the so-called Nadaraya-Watson estimator in two cases (use of fixed bandwidth and variable) through simulation with different models and samples sizes. Through simulation experiments and the results showed that for the first and second models preferred NW with fixed bandwidth fo
... Show MoreBackground: Clubfoot, or talipes equinovarus, is a congenital deformity that consist of; supination and adduction of the forefoot and midfoot; equinus of hindfoot and varus. It was found that more than 100,000 babies are born each year with congenital clubfoot
Objectives: The purpose of this study was to investigate the complications of ponseti method for treatment of children with idiopathic club foot.
Subjects and Methods: 50 children with 74 clubfeet were managed by Ponseti method from May 2019 to July 2020 in Al-Wasity teaching hospital with primary correction of the deformity followed sometimes by elongation of Achilles tendon then the pati
... Show MoreIn this work, pure and copper mixed oxide PAni nanofiber thin films are successfully synthesized on silicon substrates by hydrothermal method and spin coating technique at room temperature with thickness of about 325 nm. The structural, surface morphological, optical and photoconductivity properties have been investigated. The XRD results showed that PAni films have crystalline nature, CuO and PAni/CuO nanostructure composites are monoclinic polycrystalline structure. The FESEM images of PAni clearly indicate that it has nanofiber-like structure, whereas the CuO film has spongelike shape. The surface morphology analysis of PAni/CuO composite shows that nanofiber caped with inorganic material which is CuO is a core-shell structure. Op
... Show MoreObjective: To assess the functional outcome, time to union, shoulder pain, blood loss, operative time, iatrogenic radial nerve injury, hospitalization, and infection. Methodology: It is a prospective randomized study on 30 patients with mid-shaft humerus fracture according to AO classification (1.2A1, 2, 3 and 1,2B) with functioning radial nerve. They were randomly dividing into two groups. Group A were treated by a closed antegrade interlocking nail, and group B treated by open reduction and locked compression plate fixation. The follow-up was up to 6 months, including time to union, shoulder pain, intraoperative blood loss, operative time and iatrogenic radial nerve injury. Functional outcome was assessed by quick DASH score. Resu
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More