A number of compression schemes were put forward to achieve high compression factors with high image quality at a low computational time. In this paper, a combined transform coding scheme is proposed which is based on discrete wavelet (DWT) and discrete cosine (DCT) transforms with an added new enhancement method, which is the sliding run length encoding (SRLE) technique, to further improve compression. The advantages of the wavelet and the discrete cosine transforms were utilized to encode the image. This first step involves transforming the color components of the image from RGB to YUV planes to acquire the advantage of the existing spectral correlation and consequently gaining more compression. DWT is then applied to the Y, U and V color space information giving the approximate and the detail coefficients. The detail coefficients are quantized, coded using run length encoding (RLE) and SRLE. The approximate coefficients were coded using DCT, since DCT has superior compression performance when image information has poor power concentration in high frequency areas. This output is also quantized, coded using RLE and SRLE. Test results showed that the proposed DWT DCT SRLE system proved to have encouraging results in terms of Peak Signal-to-Noise Ratio (PSNR), Compression Factor (CF) and execution time when compared with some DWT based image compressions.
This research includes structure interpretation of the Yamama Formation (Lower Cretaceous) and the Naokelekan Formation (Jurassic) using 2D seismic reflection data of the Tuba oil field region, Basrah, southern Iraq. The two reflectors (Yamama and Naokelekan) were defined and picked as peak and tough depending on the 2D seismic reflection interpretation process, based on the synthetic seismogram and well log data. In order to obtain structural settings, these horizons were followed over all the regions. Two-way travel-time maps, depth maps, and velocity maps have been produced for top Yamama and top Naokelekan formations. The study concluded that certain longitudinal enclosures reflect anticlines in the east and west of the study ar
... Show MoreThe increasing drinking water demand in many countries leads to an increase in the use of desalination plants, which are considered a great solution for water treatment processes. Reverse osmosis (RO) and electro-dialysis (ED) systems are the most popular membrane processes used to desalinate water at high salinity. Both systems work by separating the ionic contaminates and disposing of them as a brine solution, but ED uses electrical current as a driving force while RO uses osmotic pressure. A direct comparison of reverse osmosis and electro-dialysis systems is needed to highlight process development similarities and variances. This work aims to provide an overview of previous studies on reverse osmosis and electro-dial
... Show MoreIn order for the process of removing pollutants, including dyes, from the aquatic environment to be effective, plant wastes such as banana peels were used as adsorbent surfaces by thermally activating them (ABP) and modifying them with iron oxide nanoparticles (MABP), which were characterized using Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) techniques. They were applied in the field of Janus green (JG) dye adsorption for the batch system and studied the effect of several factors (adsorbent weight, contact time, initial concentration, and temperature). Their data were analyzed kinetically using first- and second-order kinetic models and they were found to follow the second order. Their data were also analyzed thro
... Show MoreThe growing demand for sustainable and high-performance asphalt binders has prompted the exploration of waste-derived modifiers. This study investigates the performance enhancement of Natural Asphalt (NA) using Sugarcane Molasses (SM) and Waste Engine Oil (WEO). The modified blends were prepared by partially replacing 50 % NA with varying proportions of SM and WEO ranging from 10 % to 40 % of the total weight of NA. Comprehensive testing was conducted, including penetration, softening point, ductility, viscosity, Bending Beam Rheometer (BBR), Multiple Stress Creep Recovery (MSCR), Energy Dispersive X-ray Spectroscopy (EDX), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM). The results demonstrated that
... Show MoreGroundwater quality deterioration due to anthropogenic natural activities and its immense utilization in various sectors is considered a great concern. The aim of this study is to determine the groundwater quality parameters at various sources in and around Dhaka city and compare them with Bangladesh drinking water standards. In this study, six groundwater quality parameters (pH, DO, COD, TS, TDS, and arsenic) and ten groundwater samples are analyzed to determine the water quality. The collected samples have maximum and minimum pH values of 6.9 and 6.4, respectively. Maximum and minimum DO values are 0.3 and 0.1 mg/L, respectively. The arsenic concentration is 0 mg/L for all collected groundwater samples. The maximum and minimum COD
... Show MoreThis study was aimed to develop an optimized Dy determination method using differential pulse voltammetry (DPV). The Plackett-Burman (PB) experimental design was used to select significant factors that affect the electrical current response, which were further optimized using the response surface method-central composite design (RSM-CCD). The type of electrolyte solution and amplitude modulation were found as two most significant factors, among the nine factors tested, which enhance the current response based on PB design. Further optimization using RSM-CCD shows that the optimum values for the tw
... Show MoreIn this paper, an experimental study was conducted to enhance the thermal performance of a double-pass solar air heater (SAH) using phase change material (PCM) for thermal storage at climatic conditions of Baghdad city - Iraq. The double-pass solar air heater integrated with thermal storage system was manufactured and tested to ensure that the air heating reserved after the absence of the sun. The rectangular cavity filled with paraffin wax was used as a latent heat storage and incorporated into the lower channel of solar air heater. Experiments were carried out to evaluate the charging and discharging characteristics of two similar designed solar air collectors with and without using phase change material at a constant
... Show More