In this work we prepared some schiff bases by condensation urea and benzaldehyde or its derevative ( bromo benzaldehyde or hydroxy benzaldehyde ) as ( 1 : 1 ) mole ( urea : benzaldehyde or its substitution ) to prepare compounds ( A1 , B1 , C1 , D1 , E1 , F1 , G1 ) and ( 1 : 2 ) mole ( urea : benzaldehyde or its substitution ) to prepare compounds ( A2 , B2 , C2 , D2 , E1 , F2 , G2 ) . The prepared compounds identified spectroscopic by infrared spectroscopy FT-IR and Thin layer chromotography T.L.C . The force constant calculated from the wave number for the carbonyl stretching from FT-IR chart and by using the following equation K = 4?2C2?'2? The change in double bond order for carbonyl deteremined in according with some past research by compare the force constant for the prepared compounds with the force constant in past research and calculated bond order statistically by extract the curve equation and calculated the bond order by application curve equation .
Conditional logistic regression is often used to study the relationship between event outcomes and specific prognostic factors in order to application of logistic regression and utilizing its predictive capabilities into environmental studies. This research seeks to demonstrate a novel approach of implementing conditional logistic regression in environmental research through inference methods predicated on longitudinal data. Thus, statistical analysis of longitudinal data requires methods that can properly take into account the interdependence within-subjects for the response measurements. If this correlation ignored then inferences such as statistical tests and confidence intervals can be invalid largely.
In order to obtain a mixed model with high significance and accurate alertness, it is necessary to search for the method that performs the task of selecting the most important variables to be included in the model, especially when the data under study suffers from the problem of multicollinearity as well as the problem of high dimensions. The research aims to compare some methods of choosing the explanatory variables and the estimation of the parameters of the regression model, which are Bayesian Ridge Regression (unbiased) and the adaptive Lasso regression model, using simulation. MSE was used to compare the methods.
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de
... Show MoreThe potential application of granules of brick waste (GBW) as a low-cost sorbent for removal of Ni+2ions from aqueous solutions has been studied. The properties of GBW were determined through several tests such as X-Ray diffraction (XRD), Energy dispersive X-ray (EDX), Scanning electron microscopy (SEM), and BET surface area. In batch tests, the influence of several operating parameters including contact time, initial concentration, agitation speed, and the dose of GBW was investigated. The best values of these parameters that provided maximum removal efficiency of nickel (39.4%) were 1.5 hr, 50 mg/L, 250 rpm, and 1.8 g/100mL, respectively. The adsorption data obtained by batch experiments subjected to the Three i
... Show MoreA simple and novel method was developed by combination of dispersive liquid-liquid microextraction with UV spectrophotometry for the preconcentartion and determination of trace amount of malathion. The presented method is based on using a small volume of ethylenechloride as the extraction solvent was dissolved in ethanol as the dispersive solvent, then the binary solution was rapidly injected by a syringe into the water sample containing malathion. The important parameters, such the type and volume of extraction solvent and disperser solvent, the effect of extraction time and rate, the effect of salt addition and reaction conditions were studied. At the optimum conditions, the calibration graph was linear in the range of 2-100 ng mL-1 of ma
... Show MoreThe behavior of AC conductivity (σac), loss tangent (tan δ), and relative permittivity (ε′) for composites of PVC-P/graphite electrode waste (GEW) was investigated, and a qualitative explanation was provided as a function of PVC-P weight fractions (0, 5, 10, 15, 20, and 25) wt. percent, temperature (30-90) °C, and frequency (100Hz-2MHz). The behaviors of the composites' ac. conductivity and impedance as a frequency function and temperature have been examined. The permittivity was shown to rise with increasing temperature (Tg). The relative permittivity increased as the GEW filler concentration increased and was highest in the low-frequency range; nevertheless decreased as the frequency increased.
This study was conducted to evaluate the efficacy of different techniques for extraction and purification of Tomato yellow leaf curl virus (TYLCV). An isolate of the virus free of possible contamination with other viruses infecting the same host and transmitted by the same vector Bemisia tabaci Genn. was obtained. This was realized by indicator plants and incubation period in the vector. Results obtained revealed that the virus infect Nicotiana glutinosa without visible symptoms, while Nicotiana tabaccum var. White Burley was not susceptible to the virus. The incubation period of the virus in the vector was found to be 21 hrs. These results indicate that the virus is TYLCV. Results showed that Butanol was more effective in clarification the
... Show More
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show More