Thin films of cadmium sulphoselenide (CdSSe) have been prepared by a thermal evaporation method on glass substrate, and with pressure of 4x10-5 mbar. The optical constants such as (refractive index n, dielectric constant ?i,r and Extinction coefficient ?) of the deposition films were obtained from the analysis of the experimental recorded transmittance spectral data. The optical band gap of (CdSSe) films is calculate from (?h?)2 vs. photon energy curve. CdSSe films have a direct energy gap, and the values of the energy gap were found to increase when increasing annealing temperature. The band gap of the films varies from 1.68 – 2.39 eV.
Thermal pyrolysis kinetics of virgin high-density polyethylene (HDPE) was investigated. Thermal pyrolysis of HDPE was performed using a thermogravimetric analyzer in nitrogen atmosphere under non-isothermal conditions at different heating rates 4, 7, 10 °C/min. First-order decomposition reaction was assumed, and for the kinetic analysis Kissinger-Akahira-Sunose(KAS), Flynn-Wall-Ozawa(FWO) and Coats and Redfern(CR) method were used. The obtained values of average activation energy by the KAS and FWO methods were equal to137.43 and 141.52 kJ/mol respectively, these values were considered in good agreement, where the average activation energy value obtained by CR equation methods was slightly different which equal to 153.16 kJ/
... Show MoreLow cost Co-Precipitation method was used for Preparation of novel nickel oxide (NiO) nano particle thin films with Simple, with two different PH values 6, 12 and its effect on structural and optical properties as an active optical filter. Experimental results of structural properties X-ray diffraction (XRD) showed that both Nickel oxide nanoparticles with (PH=6 and 12) have polycrystalline structure smaller average particle size about 8.5 nm for PH=6 in comparison with PH=12. Morphological studies using Scanning electron microscopy (SEM) and atomic force microscope (AFM) show uniform nano rod distribution for PH=6 with smaller average diameter, average roughness as compared with NiO with
... Show MoreThere is of great importance to know the values of the optical constants of materials due to their relationship with the optical properties and then with their practical applications. For this reason, it was proposed to study the optical constants of amorphous silicon nanostructures (quantum well, quantum wire, and quantum dot) because of their importance in the world of optical applications. In this study, it was adopted the Herve and Vandamme (HV) model of the refractive index because it was found that this model has very good optical properties for almost all semiconductors. Also, it was carried out by applying experimental results for the energy gaps of these three nanostructures, which makes the results of the theoretical calculations
... Show MoreIn this paper it was designed a new fractal optical modulation by using a new iteration of fractal function, the result was analyzed by MTF evaluation, and it compared with results of normal optical modulation.
The normal and fractal optical modulator is a circular disc which has a radius R=9cm, both of them consist of twenty sectors, ten sectors are opaque and the other ten sectors are transmitted for the light.
The fractal optical modulator contains two patterns, the pattern two can be used to detect the target, and pattern one can be used to lock the target
The best similarity of MTF behavior for normal and fractal Reticle was evaluating the power transparent depends on the size o
... Show MoreIn this paper, a step-index fiber with core index 1.445 5 1 7 and cladding index 1.443 1 5 7 has been designed and studied. Multimode operation is achieved by using a fiber with core radius 25 μm operating at a wavelength of 1.3 μm. The mode parameters (effective refractive index, phase constant, fractional modal power in the core and cutoff wavelength) were calculated using RP fiber calculator (PRO version 2020). The shapes of the intensity and amplitude distribution of linearly polarized guided modes were shown.
We focus on studying the dynamics of bulk semiconductor optical amplifiers and their effects on the saturation region for short pulse that differ, however there is the same unsaturated gain for both dynamics. Parameters like current injection, fast dynamics present by carrier heating (CH), and spectra hole burning (SHB) are studied for regions that occur a response to certain dynamics. The behavior of the saturation region is found to be responsible for phenomena such as recovery time and chirp for the pulse under study.
The efficient behavior of a low-concentrating photovoltaic-thermal system with a micro-jet channel (LCPV/T-JET) and booster mirror reflector is experimentally evaluated here. Micro-jets promote the thermal management of PV solar cells by implementing jet water as active cooling, which is still in the early stages of development. The booster mirror reflector concentrates solar irradiance into solar cells and improves the thermal, electrical, and combined efficiencies of the LCPV/T-JET system. The LCPV/T-JET system was tested under ambient weather conditions in the city of Bangi, Selangor, Malaysia, and all data was recorded between 10:00 a.m. and 4:00 p.m. Parametric studies were conducted to compare the performance of the LCPV/T-JET system
... Show MoreThe subgrade soil is the foundation plate form of the roadway; it should sustain its structural characteristics throughout the design life of the roadway with minimal requirements for maintenance. When Gypseous soil is implemented in the construction of subgrade, problems regarding collapsibility and poor structural capacity usually occur when the subgrade came in touch with excess water. Asphalt stabilization could furnish a proper solution to such problems. In this investigation, an attempt has been made to monitor the variations in compressibility characteristics of asphalt stabilized subgrade soil subjected to 30 cycles of (freezing-thawing) and (heating-cooling). Data have been observed after each 10 cycles, and compared with that of r
... Show MoreA one-dimensional hydraulic model was conducted to simulate the flow in Diyala River. The research aims to study the flow capacity along Diyala River and especially concerning on reach of the river within Baqubah City during flood seasons by using HEC-RAS, 5.07 software. Moreover, specifying the hydraulic problems and then the necessary treatments to overcome them were suggested. A 190 km length of the reach of Diyala River was included in this study, starts from Diyala submerged weir to the confluence of Diyala-Tigris River south of Baghdad City. Good agreement resulted between the measured and the simulation results with a determination coefficient (R2) value of 0.84 with Manning Co