This paper reports a.c., d.c. conductivity and dielectric behavior of Ep-hybrid composite with12 Vol.% Kevlar-Carbon hybrid . D.C. conductivity measurements are conducted on the graded composites by using an electrometer over the temperature range from (293-413) K. It was shown then that conductivity increases by increasing number of Kevlar –Carbon fiber layers (Ep1, Ep2, Ep3), due to the high electrical conductivity of Carbon fiber. To identify the mechanism governing the conduction, the activation energies at low temperature region (LTR) and at high temperature region (HTR) have been calculated. The activation energy values for hybrid composite decrease with increasing number of fiber layers. The a.c. conductivity was measured over frequency range 100 Hz-1MHz. It was found that? ?(?) values increase with increasing frequency according to the relation ? (?)=Aws . The values of frequency exponent (s) were found to increase with number of layers.
Blends of Polymethyl methacrylate (PMMA)/polyvinyl alcohol (PVA) doped with 2% weight percentage of Sn were prepared with different blend ratios using casting technique. The measurements of A.C conductivity σa.c within the frequency range (25kHz – 5MHz) of undoped and Sn doped PMMA/PVA blends obeyed the relationship σ= Aws were the value of s within the range 0 > s > 1. The results showed that σa.c increases with the increase of frequency. The exponent s showed preceding increase with the increase of PVA content for PMMA/PVA blends doped with Sn. The dielectric constant, dielectric loss, A.C electrical conductivity are varied with the concentration of PVA in the blend and frequency of applied electrical field.
The dielectric properties of polyvinyl chloride (PVC)-MnCl2 composite were studied by using the impedance technique. The measurements were carried out as a function of frequency in the range from 10 Hz to 13 MHz and temperature range from 27oC to 55oC. Using a composite of 20 wt. % MnCl2 by weight, it was found that the dielectric constants and the dielectric loss of the prepared films increase with the increasing temperature at law frequency and the enhancement of the ionic conduction which is confirmed by the increase the of AC. conductivity and the decrease of the activation energy of the conduction mechanism at high applied frequency. The observed relaxation and polarization effects of composite a
... Show MoreThis research is concerned to investigate the behavior of reinforced concrete (RC) deep beams strengthened with carbon fiber reinforced polymer (CFRP) strips. The experimental part of this research is carried out by testing seven RC deep beams having the same dimensions and steel reinforcement which have been divided into two groups according to the strengthening schemes. Group one was consisted of three deep beams strengthened with vertical U-wrapped CFRP strips. While, Group two was consisted of three deep beams strengthened with inclined CFRP strips oriented by 45o with the longitudinal axis of the beam. The remaining beam is kept unstrengthening as a reference beam. For each group, the variable considered
... Show MoreIn this work, two groups of nanocomposite material, was prepared from unsaturated polyester resin (UPE), they were prepared by hand lay-up method. The first group was consisting of (UPE) reinforced with individually (ZrO2) nanoparticles with particle size (47.23nm). The second group consists of (UPE) reinforced with hybrid nanoparticles consisting of zirconium oxide and yttrium oxide (70% ZrO2 + 30% Y2O3) with particles size (83.98nm). This study includes the effect of selected volume fraction (0.5%, 1%, 1.5%, 2%, 2.5%, 3%) for both reinforcement nano materials. Experimental investigation was carried out by analyzing the thermo-physical properties like thermal conductivity, thermal diffusivity and specific heat for the polymeric composit
... Show MoreIn this work a hybrid composite materials were prepared containing matrix of polymer (polyethylene PE) reinforced by different reinforcing materials (Alumina powder + Carbon black powder CB + Silica powder). The hybrid composite materials prepared are: • H1 = PE + Al2O3 + CB • H2 = PE + CB + SiO2 • H3 = PE + Al2O3 + CB + SiO2 All samples related to electrical tests were prepared by injection molding process. Mechanical tests include compression with different temperatures and different chemical solutions at different immersion times The mechanical experimentations results were in favour of the samples (H3) with an obvious weakness of the samples (H1) and a decrease of these properties with a rise in temperature and the increasing
... Show MoreIraqi calcium bentonite was activated via acidification to study its structural and electrical properties. The elemental analysis of treated bentonite was determined by using X-ray fluorescence while the unit crystal structure was studied through X-ray diffraction showing disappearance of some fundamental reflections due to the treatment processes. The surface morphology, on the other hand, was studied thoroughly by Scanning Electron microscopy SEM and Atomic Force Microscope AFM showing some fragments of montmorillonite sheets. Furthermore, the electrical properties of bentonite were studied including: The dielectric permittivity, conductivity, tangent loss factor, and impedance with range of frequency (0.1-1000 KHz) at different temperatu
... Show More
Ferrite with the general formula CuLayFe2-yO4 (where y=0.02, 0.04, 0.06, 0.08 and 0.1), were prepared by standard ceramic technique. The main cubic spinel structure phase for all samples was confirmed by x-ray diffraction patterns with the appearance of small amount of secondary phases. The lattice parameter results were 8.285-8.348 Å. X-ray density increased with La addition and showed values between 5.5826 – 5.7461gm/cm3. The Atomic Force Microscopy (AFM) showed that the average grain size was decreasing with the increase in La concentration. The Hall coefficient was found to be positive. It de |
Effect of nano and micro SiO2 particles with different weight percent (2,4,6,8 and 10) %wt on the Interlaminar fracture toughness (GIc) of 16-plies of woven roving glass fiber /epoxy composites prepared by hand lay – up technique were investigated. The specimens were tested using DCB test (mode I).
Area method was used to compute the interlaminar fracture toughness. The results show that, GIc would increase with the increasing in the filler content, the main failure in microcomposites and nanocomposites was delamination in the layers, the delamination reduced with increasing in the filler content.
Configured binary polymer blends of epoxy and Polyurethane was chosen varying proportions of these materials led to the production of homogeneous mixtures of Althermust Althermust and descent was poured polyurethane models required in the form of 4 mm thick plates