Artemia fransiscana is one of the most important live food for commercial larval aquaculture. The aim of this study is to investigate the effects of 890 nm diode laser irradiation on Artemia capsulated cysts using (1-10) minutes exposure time, and 2.26x10-3 J/cm2 Fluence. The Artemia samples were obtained from two locations: Dyalaa and Basraa. After irradiation, hatching percentage (H %) and hatching efficiency(HE) of Artemia were measured after 24 and 48 hours of incubation. The results of the effect of laser light on the capsulated cysts from Dyalaa showed that the optimum dose for enhancing (H %) after 24 hours of incubation is using 10 minutes exposure time, while after 48 hours of incubation the (H %) enhancement can be achieved using 6 minutes exposure time. The optimum exposure times for (HE) enhancement after 24 and 48 hours of incubation were 5 and 7 minutes. The results of the effect of laser light on the capsulated cysts from Basraa showed that after 24 hours of incubation, the optimum exposure times for enhancement (H%) was 9 minutes, while after 48 hours of irradiation the best exposure times was 5 minutes . Very effective enhancement of (HE) was noticed after 24 hours of irradiation at 3 minutes exposure time using 2.26x10-3 J/cm2 Fluence. No enhancement was observed after 48 hours of irradiation In conclusion, 890 nm diode laser irradiation can be used successfully for increasing Hatching percentage (H %) and Hatching Efficiency (HE) of Artemia capsulated cysts using certain energy density and certain exposure times
The paper include studies the effect of solvent of dye doped in polymeric laser sample which manufactured in primo press way, which is used as an active (R6G) tunable dye lasers. The remarks show that, when the viscosity of the solvent (from Pure Water to Ethanol), for the same concentration and thickness of the performance polymeric sample is increased, the absorption spectrum is shifts towards the long wave length (red shift), & towards short wave length (blue shift) for fluorescence spectrum, also increased the quantum fluorescence yield. The best result we obtained for the quantum fluorescence yield is (0.882) with thickness (0.25mm) in Ethanol solvent in concentration (2*10-3mole/liter), while when we used the Pure Water as a solvent,
... Show MoreEffect of the thermal annealing at 400oC for 2 hours and Argon laser radiation for half hour on the optical properties of AgAlS2 thin films, prepared on glass slides by chemical spray pyrolysis at 360oC with (0.18±0.05) μm thickness .The optical characteristics of the prepared thin films have been investigated by UV/Vis spectrophotometer in the wavelength range (300 – 1100)nm .The films have a direct allow electronic transition with optical energy (Eg) values decreased from (2.25) eV for untreated thin films to (2.10) eV for the annealed films and to (2.00) eV for the radiated films. The maximum value of the refractive index (n) for all thin films are given about (2.6). Also the extinction coefficient (K) and the real and imaginary d
... Show MoreThe paper include study the effect thickness of the polymeric sample which is manufactured by thermo press way. The sample was used as an active tunable R6G laser media. The remarks show that, when the thickness of the samples is increased, with the same concentration, the spectrum will shift towards the short wavelength, & the quantum fluorescence yield will increased. The best result we obtained for the quantum fluorescence yield is (0.68) at the sample, with thickness (0.304mm) in Ethanol solvent, while when we used the Pure Water as a solvent, we found that the best quantum fluorescence yield is (0.63) at (0.18mm) thickness of the sample.
In this study, Laser Shock Peening (LSP) effect on the polymeric composite materials has been investigated experimentally. Polymeric composite materials are widely used because they are easy to fabricate and have many attractive features. Unsaturated polyester resin as a matrix was selected and Aluminum powder with micro particles as a reinforcement material was used with different volume fraction (2.5%, 5% and 7.5%). Hand lay-up process was used for preparation the composites. Fatigue test with constant amplitude with stress ratio (R =-1) was carried out before and after LSP process with two levels of energy (1Joule and 2Joule). The result showed an increase in the endurance strength of 25.448% at 7.5% volume fraction when peened is 1J
... Show MoreAbstract Objective: Comparison of femtosecond small incision lenticule extraction (FS-SMILE) versus Femtosecond laser Insitu keratomileusis (FS-LASIK) regarding dry eye disease (DED) and corneal sensitivity (CS) after those refractive surgeries. Methods: A comparative prospective study conducted for a period of 2 years; from March 2017 until February, 2019. Enrolled patients were diagnosed with myopia. Fifty patients (100 eyes) were scheduled for bilateral FS-SMILE and the other 50 patients (100 eyes) had been scheduled for bilateral FS-LASIK. Both groups were followed for six months after surgery. The age, gender, and preoperative refraction for both groups were matched. Complete evaluation of dry eye disease had been
... Show MoreAbstract Objective: Comparison of femtosecond small incision lenticule extraction (FS-SMILE) versus Femtosecond laser Insitu keratomileusis (FS-LASIK) regarding dry eye disease (DED) and corneal sensitivity (CS) after those refractive surgeries. Methods: A comparative prospective study conducted for a period of 2 years; from March 2017 until February, 2019. Enrolled patients were diagnosed with myopia. Fifty patients (100 eyes) were scheduled for bilateral FS-SMILE and the other 50 patients (100 eyes) had been scheduled for bilateral FS-LASIK. Both groups were followed for six months after surgery. The age, gender, and preoperative refraction for both groups were matched. Complete evaluation of dry eye disease had been
... Show MoreThe laser micro-cutting process is the most widely commonly applied machining process which can be applied to practically all metallic and non-metallic materials. While this had challenges in cutting quality criteria such as geometrical precision, surface quality and numerous others. This article investigates the laser micro-cutting of PEEK composite material using nano-fiber laser, due to their significant importunity and efficiency of laser in various manufacturing processes. Design of experiential tool based on Response Surface Methodology (RSM)-Central Composite Design (CCD) used to generate the statistical model. This method was employed to analysis the influence of parameters including laser speed,
... Show MoreIn this work, we study the effect of doping Sn on the structural and optical properties of pure cadmium oxide films at different concentrations of Tin (Sn) (X=0.1,0.3 and 0.5) .The films prepared by using the laser-induced plasma at wavelength of laser 1064 nm and duration 9 ns under pressure reached to 2.5×10-2 mbar. The results of X-ray diffraction tests showed that the all prepared films are polycrystalline. As for the topography of the films surface, it was measured using AFM , where the results showed that the grain size increases with an increase in the percentage of doping in addition to an increase in the average roughness. The optical properties of all films have also been studied through the absorbance s
... Show MoreIn the present work, the feasibility of formation near-ideal ohmic behavior of In/n-Si contact efficiently by 300 s duration Nd:YAG pulsed laser processing has been recognized. Several laser pulses energy densities have been used, and the optimal energy density that gives best results is obtained. Topography of the irradiated region was extensively discussed and supported with micrographic illustrations to determine the surface condition that can play the important role in the ohmic contact quality. I-V characteristics in the forward and reverse bias and barrier height measurements have been studied for different irradiated samples to determine the laser energy density that gives best ohmic behavior. Comparing the current results with
... Show MoreThis research investigates new glasses which are best suitable for design of optical systems
working in the infrared region between 1.01 to 2.3μm. This work is extended to Oliva & Gennari
(1995,1998) research in which they found that the best known achromatic pairs are (BAF2-IRG2; SRF2-
IRG3; BAF2-IRG7; CAF2-IRGN6; BAF2-SF56A and BAF2-SF6). Schott will most probably stop the
production of these very little used and commercially uninteresting IRG glasses. In this work equally
good performances can be obtained by coupling BAF2, SRF2&CAF2 with standard glasses from Schott
or Ohara Company. The best new achromatic pairs found are (SRF2-S-TIH10; CAF2-S-LAL9; CAF2-SLAL13
and CAF2-S-BAH27). These new achromatic pai