In this paper, a sufficient condition for stability of a system of nonlinear multi-fractional order differential equations on a finite time interval with an illustrative example, has been presented to demonstrate our result. Also, an idea to extend our result on such system on an infinite time interval is suggested.
The increasing complexity of assaults necessitates the use of innovative intrusion detection systems (IDS) to safeguard critical assets and data. There is a higher risk of cyberattacks like data breaches and unauthorised access since cloud services have been used more frequently. The project's goal is to find out how Artificial Intelligence (AI) could enhance the IDS's ability to identify and classify network traffic and identify anomalous activities. Online dangers could be identified with IDS. An intrusion detection system, or IDS, is required to keep networks secure. We must create efficient IDS for the cloud platform as well, since it is constantly growing and permeating more aspects of our daily life. However, using standard intrusion
... Show MoreWireless channels are typically much more noisy than wired links and subjected to fading due to multipath propagation which result in ISI and hence high error rate. Adaptive modulation is a powerful technique to improve the tradeoff between spectral efficiency and Bit Error Rate (BER). In order to adjust the transmission rate, channel state information (CSI) is required at the transmitter side.
In this paper the performance enhancement of using linear prediction along with channel estimation to track the channel variations and adaptive modulation were examined. The simulation results shows that the channel estimation is sufficient for low Doppler frequency shifts (<30 Hz), while channel prediction is much more suited at
... Show MoreThe research tagged (functional enhancement and its reflection on industrial product systems) focused on the possibility of enhancing industrial products in terms of form and functionality in a way that they are able to meet the needs of the user through the impact of technology and modern technologies on the functional enhancement of industrial products and their effectiveness in achieving formal and functional design variables, and producing products Industrial products are highly efficient and durable in order to improve them in order to meet the needs of the user, the transfer of technology between life forms and industrial products is desirable because the functional enhancement processes that occurred in general on industrial produ
... Show MoreHigh performance work systems and general industrial enterprise performance
In wireless broadband communications using single-carrier interleave division multiple access (SC-IDMA) systems, efficient multiuser detection (MUD) classes that make use of joint hybrid decision feedback equalization (HDFE)/ frequency decision-feedback equalization (FDFE) and interference cancellation (IC) techniques, are proposed in conjunction with channel coding to deal with several users accessing the multipath fading channels. In FDFE-IDMA, the feedforward (FF) and feedback (FB) filtering operations of FDFE, which use to remove intersymbol interference (ISI), are implemented by Fast Fourier Transforms (FFTs), while in HDFE-IDMA the only FF filter is implemented by FFTs. Further, the parameters involved in the FDFE/
... Show MoreThis paper is concerned with introducing and studying the M-space by using the mixed degree systems which are the core concept in this paper. The necessary and sufficient condition for the equivalence of two reflexive M-spaces is super imposed. In addition, the m-derived graphs, m-open graphs, m-closed graphs, m-interior operators, m-closure operators and M-subspace are introduced. From an M-space, a unique supratopological space is introduced. Furthermore, the m-continuous (m-open and m-closed) functions are defined and the fundamental theorem of the m-continuity is provided. Finally, the m-homeomorphism is defined and some of its properties are investigated.
In this study, a mathematical model for the kinetics of solute transport in liquid membrane systems (LMSs) has been formulated. This model merged the mechanisms of consecutive and reversible processes with a “semi-derived” diffusion expression, resulting in equations that describe solute concentrations in the three sections (donor, acceptor and membrane). These equations have been refined into linear forms, which are satisfying in the special conditions for simplification obtaining the important kinetic constants of the process experimentally.
This article explores the process of VGI collection by assessing the relative usability and accuracy of a range of different methods (Smartphone GPS, Tablet, and analogue maps) for data collection amongst different demographic and educational groups, and in different geographical contexts. Assessments are made of positional accuracy, completeness, and data collectors’ experiences with reference to the official cadastral data and the administration system in a case-study region of Iraq. Ownership data was validated by crowd agreement. The result shows that successful VGI projects have access to varying data collection methods.
There are many studies dealt with handoff management in mobile communication systems and some of these studies presented handoff schemes to manage this important process in cellular network. All previous schemes used relative signal strength (RSS) measurements. In this work, a new proposed handoff scheme had been presented depending not only on the RSS measurements but also used the threshold distance and neighboring BSS power margins in order to improve the handoff management process. We submitted here a threshold RSS as a condition to make a handoff when a mobile station moves from one cell to another this at first, then we submitted also a specified margin between the current received signal and the ongoing BS's received signal must be s
... Show MoreAchieving an accurate and optimal rate of penetration (ROP) is critical for a cost-effective and safe drilling operation. While different techniques have been used to achieve this goal, each approach has limitations, prompting researchers to seek solutions. This study’s objective is to conduct the strategy of combining the Bourgoyne and Young (BYM) ROP equations with Bagging Tree regression in a southern Iraqi field. Although BYM equations are commonly used and widespread to estimate drilling rates, they need more specific drilling parameters to capture different ROP complexities. The Bagging Tree algorithm, a random forest variant, addresses these limitations by blending domain kno