This study is attempt to improve thermal isolation through measuring thermal conductivity composite of on polyester resin with fillers of (TiO2, ZnO, Acrylonitril, wood flour Coconut (Wf). The grain size of the fillers is 200 µm. The number of samples is (16) in addition to the virgin sample; these samples are prepared by cast molding method for polyester with filler volume fractions (5%, 10%, 15% and 20%). Shore hardness tests were used to measure the hardness and Lee disk method for thermal conductivity. The experimental results showed that the (20% ZnO) sample has the maximum value of thermal conductivity where (20% w.f) has minimum thermal conductivity .on the other hand (15% ZnO) sample give the maximum value of hardness where (20% w.f) sample gave the minimum value of hardness. From this study there is an important factor that should be observed that is the relationship between hardness and thermal conductivity. The study prove that the experimental results satisfy the theoretical assumptions in that the additive material (fillers) of metals base increase thermal conductivity where the material of cellulose base decrease the thermal conductivity and give good thermal isolation but with low hardness and all the result above the refry sample .
Hydrothermal process method using different dimensions reactors with volume 100 ml (homemade) was employed to prepare titanium sub-oxide Ti6O11, where one gram of TiO2 nanoparticles 30-50 nm and 3M (20 ml) of NaOH as suspension was used . The samples are characterized using X-ray diffraction, Raman spectroscopy, and Field Emission Scanning Electron Microscopy (FE-SEM). X-ray diffraction revealed the formation of sub- oxide titanium Ti6O11 of triclinic structure with Magneli phase, when the temperature applied was 363K for 9h.While FE-SEM showed uniform hierarchical structures with planar grass-like shapes. A novel phase has been found from rutile titanium.
In this research work a composite material was prepared contains a matrix which is unsaturated polyester resin (UPE) reinforced with carbon nanotube the percentage weight (0.1, 0.2, 0.4.0.5) %, and Zn particle the percentage weight (0.1, 0.2,0.4,0.5)%.
All sample were prepared by hand lay-up, process the mechanical tests contains hardness test, wear rate test, and the coefficient of thermal conductivity. The results showed a significant improvement in the properties of overlapping, Article containing carbon nano-tubes and maicroparticles of zinc because of its articles of this characteristics of high quality properties led to an, an increase in the coefficient of the rmalconductivity, and increase the hardness values with increased pe
Hydrogen sulfide removal catalyst was prepared chemically by precipitation of zinc bicarbonate at a controlled pH. The physical and chemical catalyst characterization properties were investigated. The catalyst was tested for its activity in adsorption of H2S using a plant that generates the H2S from naphtha hydrodesulphurization and a unit for the adsorption of H2S. The results comparison between the prepared and commercial catalysts revealed that the chemical method can be used to prepare the catalyst with a very good activity.
It has observed that the hydrogen sulfide removal over zinc oxide catalyst follows first order reaction kinetics with activation energy of 19.26 kJ/mole and enthalpy and e
... Show MoreTo fabricate an inexpensive surface coating with excellent mechanical properties with good water resistance and thermal diffusion, white eggshell fibers with particle size (~1micrometer) has been added by different weight percentages (1,2,3,4,5,6,7 and 8 %) to Unsaturated Polyester.
The weight ratio (4%) of eggshell powder is a good ratio to be added to polyester to improve its mechanical properties, such as hardness, impact strength, and wear resistance. The hardness was improved by (3.75%); impact strength has the same value as polyester, flexural strength by (8.43%) and high improvement in wear resistance (74.4%), as well as to get further improvements in mechanical properties of polyester, the eggshell powder was added
... Show MoreZinc Oxide (ZnO) is probably the most typical II-VI
semiconductor, which exhibits a wide range of nanostructures. In
this paper, polycrystalline ZnO thin films were prepared by chemical
spray pyrolysis technique, the films were deposited onto glass
substrate at 400 °C by using aqueous zinc chloride as a spray
solution of molar concentration of 0.1 M/L.
The crystallographic structure of the prepared film was analyzed
using X-ray diffraction; the result shows that the film was
polycrystalline, the grain size which was calculated at (002) was
27.9 nm. The Hall measurement of the film studied from the
electrical measurements show that the film was n-type. The optical
properties of the film were studied using
Due to the advantages over other metallic materials, such as superior corrosion resistance, excellent biocompatibility, and favorable mechanical properties, titanium, its alloys and related composites, are frequently utilized in biomedical applications, particularly in orthopedics and dentistry. This work focuses on developing novel titanium-titanium diboride (TiB2; ceramic material) composites for dental implants where TiB2 additions were estimated to be 9 wt.%. In a steel mold, Ti-TiB2 composites were fabricated using a powder metallurgy technique and sintered for five hours at 1200 °C. Microstructural and chemical properties were analyzed by energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ra
... Show MoreA hand lay-up method was used to prepare Epoxy/ metal composites. Epoxy resin (EP) was used as a matrix with metal particles (Al, Cu, and Fe) as fillers.
The preparation method includes preparing square panels of composites with different weight percentage of fillers (10, 20, 30, 40, and 50%). Standard specimens (88mm in diameter) for thermal conductivity tests were prepared to measure thermal conductivity kexp.The result of experimental thermal conductivity kexp, for EP/metal composites show that, kexp increase with increasing weight percentage, For EP/ Al and EP/Cu composites, and it have have maximum values of 0.33 and 0.35 W/m.K, respectively. While kexp for EP/ Fe composite show slight increase with maximum value of 0.186 W/m.K.