In Automatic Speech Recognition (ASR) the non-linear data projection provided by a one hidden layer Multilayer Perceptron (MLP), trained to recognize phonemes, and has previous experiments to provide feature enhancement substantially increased ASR performance, especially in noise. Previous attempts to apply an analogous approach to speaker identification have not succeeded in improving performance, except by combining MLP processed features with other features. We present test results for the TIMIT database which show that the advantage of MLP preprocessing for open set speaker identification increases with the number of speakers used to train the MLP and that improved identification is obtained as this number increases beyond sixty. We also present a method for selecting the speakers used for MLP training which further improves identification performance.
In this paper two main stages for image classification has been presented. Training stage consists of collecting images of interest, and apply BOVW on these images (features extraction and description using SIFT, and vocabulary generation), while testing stage classifies a new unlabeled image using nearest neighbor classification method for features descriptor. Supervised bag of visual words gives good result that are present clearly in the experimental part where unlabeled images are classified although small number of images are used in the training process.
This study was aimed to determine a phytotoxicity experiment with kerosene as a model of a total petroleum hydrocarbon (TPHs) as Kerosene pollutant at different concentrations (1% and 6%) with aeration rate (0 and 1 L/min) and retention time (7, 14, 21, 28 and 42 days), was carried out in a subsurface flow system (SSF) on the Barley wetland. It was noted that greatest elimination 95.7% recorded at 1% kerosene levels and aeration rate 1L / min after a period of 42 days of exposure; whereas it was 47% in the control test without plants. Furthermore, the percent of elimination efficiencies of hydrocarbons from the soil was ranged between 34.155%-95.7% for all TPHs (Kerosene) concentrations at aeration rate (0 and 1 L/min). The Barley c
... Show MoreThe process of risk assessment in the build-operate transfer (BOT) project is very important to identify and analyze the risks in order to make the appropriate decision to respond to them. In this paper, AHP Technique was used to make the appropriate decision regarding response to the most prominent risks that were generated in BOT projects, which includes a comparison between the criteria for each risk as well as the available alternatives and by mathematical methods using matrices to reach an appropriate decision to respond to each risk.Ten common risks in BOT contracts are adopted for analysis in this paper, which is grouped into six main risk headings.The procedures followed in this paper are the questionnaire method
... Show MoreIn this paper, we implement and examine a Simulink model with electroencephalography (EEG) to control many actuators based on brain waves. This will be in great demand since it will be useful for certain individuals who are unable to access some control units that need direct contact with humans. In the beginning, ten volunteers of a wide range of (20-66) participated in this study, and the statistical measurements were first calculated for all eight channels. Then the number of channels was reduced by half according to the activation of brain regions within the utilized protocol and the processing time also decreased. Consequently, four of the participants (three males and one female) were chosen to examine the Simulink model duri
... Show MoreThe segmentation of aerial images using different clustering techniques offers valuable insights into interpreting and analyzing such images. By partitioning the images into meaningful regions, clustering techniques help identify and differentiate various objects and areas of interest, facilitating various applications, including urban planning, environmental monitoring, and disaster management. This paper aims to segment color aerial images to provide a means of organizing and understanding the visual information contained within the image for various applications and research purposes. It is also important to look into and compare the basic workings of three popular clustering algorithms: K-Medoids, Fuzzy C-Mean (FCM), and Gaussia
... Show More<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c
... Show MoreExchange of information through the channels of communication can be unsafe. Communication media are not safe to send sensitive information so it is necessary to provide the protection of information from disclosure to unauthorized persons. This research presented the method to information security is done through information hiding into the cover image using a least significant bit (LSB) technique, where a text file is encrypted using a secret sharing scheme. Then, generating positions to hiding information in a random manner of cover image, which is difficult to predict hiding in the image-by-image analysis or statistical analyzes. Where it provides two levels of information security through encryption of a text file using the secret sha
... Show MoreNurse scheduling problem is one of combinatorial optimization problems and it is one of NP-Hard problems which is difficult to be solved as optimal solution. In this paper, we had created an proposed algorithm which it is hybrid simulated annealing algorithm to solve nurse scheduling problem, developed the simulated annealing algorithm and Genetic algorithm. We can note that the proposed algorithm (Hybrid simulated Annealing Algorithm(GS-h)) is the best method among other methods which it is used in this paper because it satisfied minimum average of the total cost and maximum number of Solved , Best and Optimal problems. So we can note that the ratios of the optimal solution are 77% for the proposed algorithm(GS-h), 28.75% for Si
... Show MoreGender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea
... Show More