This paper discusses the problem of decoding codeword in Reed- Muller Codes. We will use the Hadamard matrices as a method to decode codeword in Reed- Muller codes.In addition Reed- Muller Codes are defined and encoding matrices are discussed. Finally, a method of decoding is explained and an example is given to clarify this method, as well as, this method is compared with the classical method which is called Hamming distance.
Genetic diversity was studied in 31 Iraqi common reed samples , which were collected from Iraqi marshes in Basrah , Messan and Thi-Qar provinces and also from different areas in Baghdad province . Random amplified polymorphic DNA (RAPD) technique was used for evaluation of genetic diversity between collected samples . Seven primers were used for polymorphism detecting between common reed samples . The results revealed 102 bands for the all samples when RAPD-PCR was used . The percentage rate for the monomorphic bands is 6.86% , while the percentage rate for the polymorphic bands is 93.13% , and the numbers of these bands are ranging between 10 to 17 for each used primer . The UBC1 primer gave the highest number of poly
... Show MoreThe Elliptic Curve Cryptography (ECC) algorithm meets the requirements for multimedia encryption since the encipher operation of the ECC algorithm is applied at points only and that offer significant computational advantages. The encoding/decoding operations for converting the text message into points on the curve and vice versa are not always considered a simple process. In this paper, a new mapping method has been investigated for converting the text message into a point on the curve or point to a text message in an efficient and secure manner; it depends on the repeated values in coordinate to establish a lookup table for encoding/ decoding operations. The proposed method for mapping process is&
... Show MoreMany of the elementary transformations of determinants which are used in their evaluation and in the solution of linear equations may by expressed in the notation of matrices. In this paper, some new interesting formulas of special matrices are introduced and proved that the determinants of these special matrices have the values zero. All formulation has been coded in MATLAB 7.
Homomorphic encryption became popular and powerful cryptographic primitive for various cloud computing applications. In the recent decades several developments has been made. Few schemes based on coding theory have been proposed but none of them support unlimited operations with security. We propose a modified Reed-Muller Code based symmetric key fully homomorphic encryption to improve its security by using message expansion technique. Message expansion with prepended random fixed length string provides one-to-many mapping between message and codeword, thus one-to many mapping between plaintext and ciphertext. The proposed scheme supports both (MOD 2) additive and multiplication operations unlimitedly. We make an effort to prove
... Show MoreMDS code is a linear code that achieves equality in the Singleton bound, and projective MDS (PG-MDS) is MDS code with independents property of any two columns of its generator matrix. In this paper, elementary methods for modifying a PG-MDS code of dimensions 2, 3, as extending and lengthening, in order to find new incomplete PG-MDS codes have been used over . Also, two complete PG-MDS codes over of length and 28 have been found.
The main goal of this paper is to make link between the subjects of projective
geometry, vector space and linear codes. The properties of codes and some examples
are shown. Furthermore, we will give some information about the geometrical
structure of the arcs. All these arcs are give rise to an error-correcting code that
corrects the maximum possible number of errors for its length.
In this paper, we introduce an approximate method for solving fractional order delay variational problems using fractional Euler polynomials operational matrices. For this purpose, the operational matrices of fractional integrals and derivatives are designed for Euler polynomials. Furthermore, the delay term in the considered functional is also decomposed in terms of the operational matrix of the fractional Euler polynomials. It is applied and substituted together with the other matrices of the fractional integral and derivative into the suggested functional. The main equations are then reduced to a system of algebraic equations. Therefore, the desired solution to the original variational problem is obtained by solving the resul
... Show MoreIn this research, the possibility of using waste wooden materials (reed and sawdust) was studied to produce sustainable and thermal insulation lightweight building units , which has economic and environmental advantages. This study is intended to produce light weight building units with low thermal conductivity, so it can be used as partitions to improve the thermal insulation in buildings. Waste wooden materials were used as a partial replacement of natural sand, in different percentages (10, 20, 30, and 40) % . The mix proportions were (1:2.5) (cement: fine aggregate) with w/c of 0.4. The values of 28 days oven dry density ranged between (2060-1693) kg/m3.The thermal conductivity decreased from (0.745 to 0.2
... Show MoreIn this paper, making use of the q-R uscheweyh differential operator , and the notion of t h e J anowski f unction, we study some subclasses of holomorphic f- unction s . Moreover , we obtain so me geometric characterization like co efficient es timat es , rad ii of starlikeness ,distortion theorem , close- t o- convexity , con vexity, ext reme point s, neighborhoods, and the i nte gral mean inequalities of func tions affiliation to these c lasses