Preferred Language
Articles
/
bijps-661
Formulation and Evaluation of Domperidone Nanoemulsions for Oral Rout
...Show More Authors

          The aim of the present study is to formulate, evaluate and characterize the nanoemulsion of Domperidone a poorly water-soluble anti-emetic drug.

           Domperidone powder is white or almost white powder, photosensitive, practically insoluble in water, slightly soluble in ethanol and in methanol; soluble in dimethylformamide. It is used as an antiemetic for the short-term treatment of nausea and vomiting of various etiologies.

           Solubility studies were conducted to select the oil, surfactant and cosurfactant. Phase diagrams were constructed by aqueous phase titration method. Formulations were selected from the phase diagrams. The formulations were characterized for particle size, Polydispersity index (PDI), zeta potential and in vitro drug release.

          All the formulations were in nanoscale and Formula 1 (which contain anise oil as oil phase ,mixture of Surfactant Tween 80 and  cosurfactant (ethanol) at ratio 1:1  in addition to double distilled water as aqueous phase in ratio 1:6:3 respectively ) was the selected formula depending on particle size, PDI, zeta potential and in vitro drug release.

         The Formula 1 has the best ratio because it gives the smallest nanoemulsion globule size (Particle size Average 20.81nm) and the best homogenicity (lowest PDI 0.266) and highest stability (higher zeta potential -33.9). The selected formula gives accepted physical and chemical properties.

Keywords :Nanoemulsion, Domperidone.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Mar 04 2022
Journal Name
Environmental Science And Pollution Research
Geographically weighted regression model for physical, social, and economic factors affecting the COVID-19 pandemic spreading
...Show More Authors
Abstract<p>This study aims to analyze the spatial distribution of the epidemic spread and the role of the physical, social, and economic characteristics in this spreading. A geographically weighted regression (GWR) model was built within a GIS environment using infection data monitored by the Iraqi Ministry of Health records for 10 months from March to December 2020. The factors adopted in this model are the size of urban interaction areas and human gatherings, movement level and accessibility, and the volume of public services and facilities that attract people. The results show that it would be possible to deal with each administrative unit in proportion to its circumstances in light of the factors that appe</p> ... Show More
View Publication Preview PDF
Scopus (14)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Fri Sep 26 2025
Journal Name
Applied Data Science And Analysis
Deep Learning in Genomic Sequencing: Advanced Algorithms for HIV/AIDS Strain Prediction and Drug Resistance Analysis
...Show More Authors

Genome sequencing has significantly improved the understanding of HIV and AIDS through accurate data on viral transmission, evolution and anti-therapeutic processes. Deep learning algorithms, like the Fined-Tuned Gradient Descent Fused Multi-Kernal Convolutional Neural Network (FGD-MCNN), can predict strain behaviour and evaluate complex patterns. Using genotypic-phenotypic data obtained from the Stanford University HIV Drug Resistance Database, the FGD-MCNN created three files covering various antiretroviral medications for HIV predictions and drug resistance. These files include PIs, NRTIs and NNRTIs. FGD-MCNNs classify genetic sequences as vulnerable or resistant to antiretroviral drugs by analyzing chromosomal information and id

... Show More
View Publication
Crossref
Publication Date
Wed May 10 2017
Journal Name
Australian Journal Of Basic And Applied Sciences
Block-based Image Steganography for Text Hiding Using YUV Color Model and Secret Key Cryptography Methods
...Show More Authors

Preview PDF
Publication Date
Thu Oct 01 2020
Journal Name
Upstream Oil And Gas Technology
Integrated approach for non-Darcy flow in hydraulic fractures considering different fracture geometries and reservoir characteristics
...Show More Authors

Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
AlexNet Convolutional Neural Network Architecture with Cosine and Hamming Similarity/Distance Measures for Fingerprint Biometric Matching
...Show More Authors

In information security, fingerprint verification is one of the most common recent approaches for verifying human identity through a distinctive pattern. The verification process works by comparing a pair of fingerprint templates and identifying the similarity/matching among them. Several research studies have utilized different techniques for the matching process such as fuzzy vault and image filtering approaches. Yet, these approaches are still suffering from the imprecise articulation of the biometrics’ interesting patterns. The emergence of deep learning architectures such as the Convolutional Neural Network (CNN) has been extensively used for image processing and object detection tasks and showed an outstanding performance compare

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Active Carbon from Date Stones for Phenol Oxidation in Trickle Bed Reactor, Experimental and Kinetic Study
...Show More Authors

The catalytic wet air oxidation (CWAO) of phenol has been studied in a trickle bed reactor

using  active  carbon  prepared  from  date  stones  as  catalyst  by  ferric  and  zinc  chloride activation (FAC and ZAC). The activated carbons were characterized by measuring their surface area and adsorption capacity besides conventional properties, and then checked for CWAO using a trickle bed reactor operating at different conditions (i.e. pH, gas flow rate, LHSV, temperature and oxygen partial pressure). The results showed that the active carbon (FAC and ZAC), without any active metal supported, gives the highest phenol conversion. The reaction network proposed account

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION
...Show More Authors

In this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Existence And Controllability Results For Fractional Control Systems In Reflexive Banach Spaces Using Fixed Point Theorem
...Show More Authors

       In this paper, a fixed point theorem of nonexpansive mapping is established to study the existence and sufficient conditions for the controllability of nonlinear fractional control systems in reflexive Banach spaces. The result so obtained have been modified and developed in arbitrary space having Opial’s condition by using fixed point theorem deals with nonexpansive mapping defined on a set has normal structure. An application is provided to show the effectiveness of the obtained result.

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Ieee Access
Wrapper and Hybrid Feature Selection Methods Using Metaheuristic Algorithms for English Text Classification: A Systematic Review
...Show More Authors

Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall

... Show More
View Publication Preview PDF
Scopus (57)
Crossref (51)
Scopus Clarivate Crossref
Publication Date
Thu Jun 01 2017
Journal Name
Nuclear Physics A
Alpha-cluster preformation factor within cluster-formation model for odd-A and odd–odd heavy nuclei
...Show More Authors

View Publication
Scopus (52)
Crossref (52)
Scopus Clarivate Crossref