Two prevalent neurodevelopment disorders in children are attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). The fifth version of the Diagnostic and Statistical Manual of Mental Disorders describes autism as a condition marked by limitations in social communication as well as restricted, repetitive behavior patterns. While impulsivity, hyperactivity, and lack of concentration are signs of attention deficit hyperactivity disorder. Boys experience it more frequently than girls do. This study sought for possible factors that put children at risk for autism and attention deficit hyperactivity disorder, and it investigated the association between neurodevelopment disorders in children and parental risk factor in Iraqi population. This was a cross sectional, comparative study applied in The National Center for Autism/Medical City Complex from January to April 2022.In which120 child withneuro development disorders and 120 controls participated. The data collected from the questionnaires was analyzed using SPSS 25. Independent T-test and Chi-Square test were carried out for the bivariate analysis of the data. Among the tested variables four parent-related factors were significantly (P-value < 0.05) associated with neurodevelopment disorders in children: Family history of psychiatric illness, smoking of any parent, pregnancy and labor complications, used progesterone during pregnancy. In addition to these significant parent-related risk factors, paternal age at conception time were significantly (P-value < 0.05) associated with neurodevelopment disorders of children. Based on this case control study, mothers with pregnancy & labor complications, paternal age at conception, smoking of any parent,mothers used progesterone during pregnancy and family history of psychiatric illness, had higher risk of neurodevelopment disorders.
The logistic regression model of the most important regression models a non-linear which aim getting estimators have a high of efficiency, taking character more advanced in the process of statistical analysis for being a models appropriate form of Binary Data.
Among the problems that appear as a result of the use of some statistical methods I
... Show MoreIn this paper, we will study non parametric model when the response variable have missing data (non response) in observations it under missing mechanisms MCAR, then we suggest Kernel-Based Non-Parametric Single-Imputation instead of missing value and compare it with Nearest Neighbor Imputation by using the simulation about some difference models and with difference cases as the sample size, variance and rate of missing data.
Samples of the root nodules were collected to isolate different species of the genus Rhizobium from several leguminous plants; Trigonella foenum-graecum, Medicago sativa, Lens culinaris, Vigna mungo, Vicia faba, Phaseolus vulgaris, and Cicer arietinum, and based on their morphological, cultural, and biochemical characteristics, in addition to the identification of each isolate at the species level by amplified polymerase chain reaction (PCR) and using the sequencing of the nitrogenous bases of the 16S rRNA gene, it was identified as Sinrhizobium meliloti, Sinrhizobium meliloti, Bradyrhizobium elkanii, Rhizobium leguminosarium biovar viciae, Rhizobium leguminosarium biovar phaseoli and Mesorh
... Show MoreThe digital world has been witnessing a fast progress in technology, which led to an enormous increase in using digital devices, such as cell phones, laptops, and digital cameras. Thus, photographs and videos function as the primary sources of legal proof in courtrooms concerning any incident or crime. It has become important to prove the trustworthiness of digital multimedia. Inter-frame video forgery one of common types of video manipulation performed in temporal domain. It deals with inter-frame video forgery detection that involves frame deletion, insertion, duplication, and shuffling. Deep Learning (DL) techniques have been proven effective in analysis and processing of visual media. Dealing with video data needs to handle th
... Show MoreFuture wireless networks will require advance physical-layer techniques to meet the requirements of Internet of Everything (IoE) applications and massive communication systems. To this end, a massive MIMO (m-MIMO) system is to date considered one of the key technologies for future wireless networks. This is due to the capability of m-MIMO to bring a significant improvement in the spectral efficiency and energy efficiency. However, designing an efficient downlink (DL) training sequence for fast channel state information (CSI) estimation, i.e., with limited coherence time, in a frequency division duplex (FDD) m-MIMO system when users exhibit different correlation patterns, i.e., span distinct channel covariance matrices, is to date ve
... Show More