Clopidogrel is a prodrug that must be transformed into an active metabolite by hepatic cytochrome P450 (CYP) isoenzymes to prevent platelet clotting. Polymorphisms of the CYP2C19 gene can cause a reduction or complete loss of CYP2C19 enzyme activity resulting in inhibiting clopidogrel metabolism, effectiveness and increase stroke recurrence risk in ischemic stroke patients. This study aims to investigate the correlation between genetic polymorphisms in CYP2C19*2 and*3 and recurrent risk in patients with ischemic stroke taking clopidogrel 75mg in Kurdistan region –Iraq. This retrospective case-control study was carried out at Kurdistan, Erbil, Medicina medical center, and Rizgary general hospital from January 2021 to August 2021. The blood sample was taken from the participants and tested for genotyping. The collection of data was taken from patients' medical charts in the hospital and patients’ electronic medical records from the neurology clinic. Sixty patients participated, (34) were male and (26) were female, with age range (38-96) years, diagnosed from not more than two years with ischemic stroke and taking 75 mg clopidogrel maintenance dose. Genotyping analysis showed 61.7 % were homozygotes for wild allele *1, the heterozygotes divided into 26.7% (*1/*2) and 6.7 % (*1/*3) genotype, while the homozygotes for mutant alleles CYP2C19*2,*3 distributed in 3.3 %(*2/*2) and 1.7 %(*3/*3). The (*2/*3) was not detected in the study population. A significant relation was found between risk of stroke recurrence with carrying the variant allele CYP2C19 *2, reduced CYP2C19 enzyme metabolic activity, and ACEIs/ARBs usage (P = 0.024, P = 0.039, P=0.24 respectively). On the other hand, there was no significant relationship between the risk of stroke recurrence and carrying the variant allele CYP2C19 *3 (P = 1.000). Ischemic stroke patients treated with clopidogrel and carrying a CYP2C19*2 allele had a higher risk of recurrent stroke as it is associated with reduced the metabolic activity of CYP2C19 enzyme leading to reduction of clopidogrel effect.
Background: During acrylic resin processing, the mold must be separated from the surface of the gypsum to prevent liquid resin from penetrating into the gypsum, and water from the gypsum seeping into the acrylic resin. For many years, tin foil was the most acceptable separating medium, and because it's difficult to apply, a tin-foil substitute is used. In this study, olive oil is used as an alternative to tin foil separating medium for first time, and evaluating its effect as a separating medium on some mechanical properties such as (indentation hardness and transverse strength) of acrylic resins denture base comparing it with those processed using tin-foil and tin foil substitute such as (cold mold seal) separating medium. Materials and M
... Show MoreThis research explores the use of solid polymer electrolytes (SPEs) as a conductive medium for sodium ions in sodium‐ion batteries, presenting a possible alternative to traditional lithium‐ion battery technology. The researchers prepare SPEs with varying molecular weight ratios of polyacrylonitrile (PAN) and sodium tetrafluoroborate (NaBF4) using a solution casting method with dimethyl formamide as the solvent. Through optical absorbance measurements, we identified the PAN:NaBF4 (80:20) SPE composition as having the lowest energy band gap value (4.48 eV). This composition also exhibits high thermal stability based on thermogravimetric analysis results.
The reaction of methyldopa with o-vanillin in refluxing ethanol afforded Schiff base and characterized through physical analysis with a number of spectra also the study of biological activity. The geometry of the Schiff base was identified through using (C.H.N) analysis, Mass, 1H-NMR, FT-IR, UV-Vis spectroscopy. Metal complexes of Cr3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+ with Schiff base have been prepared in the molar ratio 2:1 (Metal:L), (L = Schiff base ligand) except Hg2+ at molar ratio 1:1 (Hg:L). The prepared complexes were characterized by using Mass, FT-IR and UV-Vis spectral studies, on other than magnetic properties and flame atomic absorption, conductivity measurements. According to the results a dinuclear octahedral geo
... Show MoreThis work focuses on the preparation of pure nanocrystalline SnO2 and SnO2:Cu thin films on cleaned glass substrates utilizing a sol-gel spin coating and chemical bath deposition (CBD) procedures. The primary aim of this study is to investigate the possible use of these thin films in the context of gas sensor applications. The films underwent annealing in an air environment at a temperature of 500 ◦C for duration of 60 minutes. The thickness of the film that was deposited may be estimated to be around 300 nm. The investigation included an examination of the structural, optical, electrical, and sensing characteristics, which were explored across various preparation circumstances, specifically focusing on varied
... Show MoreAbstract Ternary Silver Indium selenide Sulfur AgInSe1.8S0.2 in pure form and with a 0.2 ratio of Sulfur were fabricated via thermal evaporation under vacuum 3*10-6 torr on glasses substrates with a thickness of (550) nm. These films were investigated to understand their structural, optical, and Hall Characteristics. X-ray diffraction analysis was employed to examine the impact of varying Sulfur ratios on the structural properties. The results revealed that the AgInSe1.8S0.2 thin films in their pure form and with a 0.2 Sulfur ratio, both at room temperature and after annealing at 500 K, exhibited a polycrystalline nature with a tetragonal structure and a predominant orientation along the (112) plane, indicating an enhanced de
... Show MoreBac kground:: Multidrug resistant methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of nosocomial and community acquired infections. The glycopeptides vancomycin has been proposed as the drug of choice for treating such infections; this lead to the emergence of vancomycin intermediate sensitive S. aureus (VISA) and vancomycin resistant S.aureus (VRSA).
Objjec tt iiv es :: To identify the vancomycin resistance both phenotypically and genotypically among MRSA isolates from different hospitals and to determine the sensitivity of these isolates to different antimicrobial agents
Metthods:: A total of 204 S. aureus isolates were obtained randomly from various clinical specimens including (wound swab, burn swab, ear swab
The present study aims to detect CTX-M-type ESBL from Escherichia coli clinical isolates and to analyze their antibotic susceptibility patterns. One hundred of E. coli isolates were collected from different clinical samples from a tertiary hospital. ESBL positivity was determined by the disk diffusion method. PCR used for amplification of CTX-M-type ESBL produced by E. coli. Out of 100 E. coli isolates, twenty-four isolates (24%) were ESBL-producers. E. coli isolated from pus was the most frequent clinical specimen that produced ESBL (41.66%) followed by urine (34.21%), respiratory (22.23%), and blood (19.05%). After PCR amplification of these 24 isolates, 10 (41.66%) isolates were found to possess CTX-M genes. The CTX-M type ESBL
... Show MoreBy using the deacetylation method, chitin is converted into bioproduct chitosan. Deacetylation can be accomplished using chemical or biological mechanisms. Due to its biocompatibility, nontoxicity, biodegradability, natural origin, and resemblance to human macromolecules, it is useful in medicine. Chitosan may have antibacterial and antioxidant properties. Additionally, it could be used in biotechnology, agriculture, gene therapy, food technology, medication delivery, cancer therapy, and other fields. The objective of the current review was to list the most significant applications of Chitosan in the biomedical field.