Synthetic anti-TB drugs are being used to treat tuberculosis (TB) as they are effective, however, they are accompanied by many side effects. The disease has remained largely uncured till date. The use of plant extracts or phytochemicals along with the anti-TB drugs is a very attractive strategy to make the treatment more effective as phytochemicals have no side-effects, are much less toxic than synthetic anti-TB drugs, are safe to use and most importantly, do not produce resistant strains as opposed to synthetic anti-TB drugs. Approximately 420,000 plant species have been identified globally and among them only a few have been explored for their therapeutic potential. Traditional medicine in different parts of the world has employed crude extracts of several plant species to cure tuberculosis. Several anti-TB phytochemicals have been found in plants that are identified to have therapeutic qualities. These phytochemicals are majorly glycosides, flavonoids, triterpenes, phenolic compounds, alkaloids, flavonoids, diterpenoid, lipids, tannins, sterols etc. by nature. They are either antimycobacterial or act synergistically with anti-TB drugs and reduce their adverse effects. Phytochemicals ameliorate the symptoms either by reducing the oxidative stress in the afflicted tissues or by regulating the inflammatory response. Hence, plant derived molecules have great potential to be used for the alternative treatment strategy for TB in future.
In networking communication systems like vehicular ad hoc networks, the high vehicular mobility leads to rapid shifts in vehicle densities, incoherence in inter-vehicle communications, and challenges for routing algorithms. It is necessary that the routing algorithm avoids transmitting the pockets via segments where the network density is low and the scale of network disconnections is high as this could lead to packet loss, interruptions and increased communication overhead in route recovery. Hence, attention needs to be paid to both segment status and traffic. The aim of this paper is to present an intersection-based segment aware algorithm for geographic routing in vehicular ad hoc networks. This algorithm makes available the best route f
... Show MoreAn intrusion detection system (IDS) is key to having a comprehensive cybersecurity solution against any attack, and artificial intelligence techniques have been combined with all the features of the IoT to improve security. In response to this, in this research, an IDS technique driven by a modified random forest algorithm has been formulated to improve the system for IoT. To this end, the target is made as one-hot encoding, bootstrapping with less redundancy, adding a hybrid features selection method into the random forest algorithm, and modifying the ranking stage in the random forest algorithm. Furthermore, three datasets have been used in this research, IoTID20, UNSW-NB15, and IoT-23. The results are compared with the three datasets men
... Show MoreWith the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MoreSemantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show MoreThe spectrum of clinical efficacy of Methotrexate (MTX) is broad in that MTX is used in the treatment of certain cancers, severe psoriasis and rheumatoid arthritis.Various mechanisms by which cancer cells grown in tissue culture become resistant to anticancer drugs. The use of multiple drugs with different mechanisms of entry into cells and different cellular targets allows for effective chemotherapy and high cure rates. In an efforts to develop effective strategies that increase the therapeutic potential of anticancer drugs with less systemic toxicity ,are being directed towards the investigation of dietary supplements and other phytotherapeutic agents for their synergistic efficacy in combination with anticancer drugs. A pr
... Show MoreThe present work aims to study forward osmosis process using different kinds of draw solutions and membranes. Three types of draw solutions (sodium chloride, sodium formate, and sodium acetate) were used in forward osmosis process to evaluate their effectiveness with respect to water flux and reverse salt flux. Experiments conducted in a laboratory-scale forward osmosis (FO) unit in cross flow flat sheet membrane cell. Three types of membranes (Thin film composite (TFC), Cellulose acetate (CA), and Cellulose triacetate (CTA)) were used to determine the water flux under osmotic pressure as a driving force. The effect of temperature, draw solution concentration, feed and draw solution flow rate, and membrane types, were studied with
... Show MoreLacing reinforcement plays a critical role in the design and performance of reinforced concrete (RC) slabs by distributing the applied loads more evenly across the slab, ensuring that no specific area of the slab is overloaded. In this study, nine slabs, divided into three groups according to the investigated parameters, were meticulously designed and evaluated to study the interplay between the lacing reinforcement and other key parameters. Each slab was crafted for simple support and was subjected to both static and repeated two-point load tests. The lacing reinforcement had an angle of 45° with various tension and lacing steel. The repeated-tested specimens with lacing reinforcement experienced smaller ductility than those of s
... Show MoreLacing reinforcement plays a critical role in the design and performance of reinforced concrete (RC) slabs by distributing the applied loads more evenly across the slab, ensuring that no specific area of the slab is overloaded. In this study, nine slabs, divided into three groups according to the investigated parameters, were meticulously designed and evaluated to study the interplay between the lacing reinforcement and other key parameters. Each slab was crafted for simple support and was subjected to both static and repeated two-point load tests. The lacing reinforcement had an angle of 45° with various tension and lacing steel. The repeated-tested specimens with lacing reinforcement experienced smaller ductility than those of s
... Show MoreCo-composting process can be acquired by combining organic fraction of municipal solid waste (OFMSW) with sewage sludge (SS) and mature compost (MC) as enhancement and bulking agent to overcome the problems of municipal solid waste and wastewater treatment plants besides the finally produced fertilizer usage for agriculture and horticulture. The effects of different mixture ratios of (OFMSW), (SS) and (MC) on the performance of composting process were investigated in this study. Piles of about 10 kg were prepared by mixing OFMSW, SS and MC in three different ratios (w/w) [OFMSW: SS: MC= 3:1:1, 3:2:1, and 3:3:1]. Results showed that the pile [3:1:1] was most beneficial to composting. The final compost products contained a
... Show MoreSelf-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin
... Show More