Aceclofenac (AC) is an orally active phenyl acetic acid derivative, non-steroidal anti-inflammatory drug with exceptional anti-inflammatory, analgesic and antipyretic properties. It has low aqueous solubility, leading to slow dissolution, low permeability and inadequate bioavailability. The aim of the current study was to prepare and characterize AC-NS-based gel to enhance the dissolution rate and then percutaneous permeability. NS.s were prepared using solvent/antisovent precipitation method at different drug to polymer ratios (1:1, 1:2, and 1:3) using different polymers such as poly vinyl pyrrolidone (PVP-K25), hydroxy propyl methyl cellulose (HPMC-E5) and poloxamer® (388) as stabilizers alone and in combinations of two polymers (1:2 and 1:4 Drug: polymer ratio). Fifteen formulas of AC-NS.s were prepared and characterized for production yield, loading efficiency, particle size, polydispersity index and physical stability. The best formulas of NS were then lyophilized to be characterized by FTIR, DSC, P-XRD and SEM. After that, the best prepared formula of AC-NS regarding the involved characterization methods was incorporated in gel dosage forms using carbopol®940. From this study, we conclude that the dissolution rate and permeability of AC were improved when the particle size was reduced to Nano-scale as compared with pure drug.
Metasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat
... Show MoreThe dynamic behavior of laced reinforced concrete (LRC) T‐beams could give high‐energy absorption capabilities without significantly affecting the cost, which was offered through a combination of high strength and ductile response. In this paper, LRC T‐beams, composed of inclined continuous reinforcement on each side of the beam, were investigated to maintain high deformations as predicted in blast resistance. The beams were tested under four‐point loading to create pure bending zones and obtain the ultimate flexural capacities. Transverse reinforcement using lacing reinforcement and conventional vertical stirrups were compared in terms of deformation, strain, and toughness changes of the tes
Background: Ceramic veneers represent the treatment of choice in minimally invasive esthetic dentistry; one of the critical factors in their long term success is marginal adaptation. The aim of the present study is to evaluate the marginal gap of ceramic veneers by using two different fabrication techniques and two different designs of preparation. Material and methods: A typodont maxillary central incisor used in the preparation from which metal dies were fabricated, which were in turn used to make forty stone dies. The dies divided into four experimental groups, each group had ten samples: A1: prepared with butt-joint incisal reduction and restored with IPS e.max CAD, A2: prepared with overlapped incisal reduction and restored with IPS e.
... Show MoreThe present work establishes and validates HILIC strategies simple, accurate, exact and precise in pure form and inpharmaceutical dosage for separating and determining theophylline. These methods are developed on HILIC theophyllineseparation in columns ZIC2 and ZIC3. The eluent was prepared by mixing buffer (20% sodium acetate-40 mM, pH 5.5), 80%acetonitrile. The flow rate is 0.8 mL/min, with gradient elution and UV detection at 270 nm. In the ZIC2 and ZIC3 columns oftheophylline determining, the concentration range was 0.01-4μg.ml-1. The lower limit of detection and quantification fortheophylline were determined as 0.130, 0.190 μg.ml-1 and accuracy were 99.70%, 99.58% on ZIC2 and ZIC3, respectively. TheHILIC methods developed and validat
... Show MoreTo detect the amount of rifampicin in bulk and medicinal dosage formulations, an accurate and costeffective UV spectrophotometric technique has been developed using the area under the peak to estimate the presence of rifampicin. This range of wavelengths (300–356 nm) was chosen. The method showed linearity in the 2–22 μg/mL range, with R2 being2 0.9996. The developed method’s linearity, detection limit, quantification limit, precision, repeatability, and accuracy were all statistically and experimentally validated. The suggested methodology can be used for routine quality control analysis of rifampicin in pure form and in capsule dosage form, as demonstrated by the satisfactory recovery percentage results. This study explores the str
... Show MoreRelease of industrial effluents comprising dyes in water bodies is one of the foremost causes of water pollution. Therefore, the proper and proficient treatment of these dyes contaminated left-over material before their release is crucial. Herein, an eco-friendly biological macromolecule Gum-Acacia (GA) integrated Fe3O4 nanoparticles composite hydrogel was manufactured via co-precipitation technique for effective adsorption of Congo red (CR) dye existing in water bodies. The as-prepared magnetic GA/Fe3O4 composite hydrogel was characterized by FTIR, XRD, EDX, VSM, SEM, and BET techniques. These studies discovered the fruitful fabrication of biodegradable magnetic GA/Fe3O4 composite hydrogel possessing porous structure with large surface are
... Show MoreWith the aim of developing potential antimicrobials, a series of novel Ciprofloxacin methylene isatin derivatives incorporating different aromatic aldehydes were synthesized and characterized by FTIR, 1H NMR, Mass spectroscopy and bases of elemental analysis. In addition, the in vitro antibacterial and antifungal properties were tested against some human pathogenic microorganisms by employing the disc diffusion technique. A majority of compounds were showing activity against several of the microorganisms. The relationship between the functional group variation and the biological activity of the evaluated compounds is discussed. From comparisons of the compounds, 3c was determined to be the most active compound.
This search include the synthesis of some new 1,3-oxazepine derivatives have been prepared, starting from reaction of L-ascorbic acid with dry acetone in presence of dry hydrogen chloride afforded the acetal (I). Treatment of the latter with p-nitrobenzoyl chloride in dry pyridine yielded the ester (II) which was dissolved in (65%) acetic acid in absolute ethanol yielded the glycol (III). The reaction of the glycol (III) with sodium periodate in distilled water at room temperature produced the aldehyde (IV). The compound (V) [2-amino-5-mercapato-1,3,4-thiadiazole] was prepared through the reaction of thiosemicarbazide with carbon disulphide (CS2) in entity of anhydrous (Na2CO3) in (abs. ethanol ). Compound (VI) [2-(5-mercapto-1,3,4-thiadiaz
... Show MoreNew nitrone and selenonitrone compounds were synthesized. The condensation method between N-(2-hydroxyethyl) hydroxylamine and substituted carbonyl compounds such as [benzil, 4, 4́-dichlorobenzil and 2,2́ -dinitrobenzil] afforded a variety of new nitrone compounds while the condensation between N-benzylhydroxylamine and substituted selenocarbonyl compounds such as [di(4-fluorobenzoyl) diselenide and (4-chlorobenzoyl selenonitrile] obtained selenonitrone compounds. The condensation of N-4-chlorophenylhydroxylamine with dibenzoyl diselenide obtained another type of selenonitrone compounds. The structures of the synthesized compounds were assigned based on spectroscopic data (FT-IR,
... Show More