In folk medicine there are various medicinal amalgamation possessing hepatoprotective activity. This activity is of significance because several toxins cause liver injury. Hence, many pharmaceutical companies are targeting herbal medicines for the treatment of liver abnormalities and towards evolving a safe and effective formulation with desired route of administration. In current review we have focused on the studies showing hepatoprotective effect using marine compounds and plant derived compounds. Liver disorder, a global health problem, usually include acute or chronic hepatitis, heptoses, and cirrhosis. It may be due to toxic chemicals and certain antibiotics. Uncontrolled consumption of alcohol also affects liver in an unhealthy way. To cure liver disorders several formulations of medicinal plants are being used. It is observed that hepatoprotective effect of plant is mostly due to flavonoids, alkaloids, terpenoids, steroids, and glycoside. A single drug cannot be useful for all the types of liver disorders. Several plant extracts for liver illness results from poisonous chemicals, viruses, extra alcohol consumption, and repeated administration of medication. By using standards of protection and efficacy, manufacture of plant products need to be ruled out. Current review provides an understanding of ethnopharmocology, toxicology of several medicinal plants manifesting hepatoprotective potential. Despite of varied database analysis new discoveries and their probabilities, evidences on viral hepatitis treatment or liver cirrhosis is inadequate. Further information about phytotherapy, toxicology, quality control studies shall be endorsed. Further in depth studies are required to discover quality trait like SAR, MOA, safety and toxicity and therapeutic potential of phytoconstituents in clinical settings.
Investigation of mesomorphic properties of new 1,3,4-thiadiazolines (which are synthesised via many steps in Scheme 1) was carried out in this study. These compounds are designed to have a heterocyclic unit, a carboxylate linkage group and a polar ether chain at the end of the molecule adjacent to the benzene ring, which enhance the dipolar interactions forces (varied from one to eight carbons) to investigate the association properties of their phases. The structure of the target compounds and the intermediates were confirmed by 1H NMR, 13C NMR, mass and FTIR spectral techniques. Polarised microscopic studies revealed that all the compounds in the series exhibited enantiotropic liquid crystalline properties. This was further confirmed using
... Show MoreAbstract: The M(II) complexes [M2(phen)2(L)(H2O)2Cl2] in (2:1:2 (M:L:phen) molar ratio, (where M(II) =Mn(II), Co(II), Cu(II), Ni(II) and Hg(II), phen = 1,10-phenanthroline; L = 2,2'-(1Z,1'Z)-(biphenyl-4,4'-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1- ylidene)diphenol] were synthesized. The mixed complexes have been prepared and characterized using 1H and13C NMR, UV/Visible, FTIR spectra methods and elemental microanalysis, as well as magnetic susceptibility and conductivity measurements. The metal complexes were tested in vitro against three types of pathogenic bacteria microorganisms: Staphylococcus aurous, Escherichia coli, Bacillussubtilis and Pseudomonasaeroginosa to assess their antimicrobial properties. From this study shows that a
... Show MoreInnovative various Schiff bases and their Co(II), Ni(II) and Cu(II) and Hg(II) compounds made by the condensation of 4-amino antipyrine with derived aminobenzoic acid (2-aminobenzoic acid, 3-aminobenzoic acid, and 4-aminobenzoic acid ) have been prepared by conventional approaches. These complexes were described by magnetic sensibility analysis, FT-IR spectra, and molar-conductance and elemental analysis. Analytical values appeared which the mixed-ligand complexes presented ratio about 2:1 (ligand: metal) with the chelation 4 or 6. The prepared compounds offered a good effect on the organisms; bacteria Staphylococcus-aurous, Escherichia-coli and fungi C. albicans, A. niger. Also, the biological products signalize which the mixed compl
... Show MoreSchiff base (methyl 6-(2- (4-hydroxyphenyl) -2- (1-phenyl ethyl ideneamino) acetamido) -3, 3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0] heptane-2-carboxylate)Co(II), Ni(II), Cu (II), Zn (II), and Hg(II)] ions were employed to make certain complexes. Metal analysis M percent, elemental chemical analysis (C.H.N.S), and other standard physico-chemical methods were used. Magnetic susceptibility, conductometric measurements, FT-IR and UV-visible Spectra were used to identified. Theoretical treatment of the generated complexes in the gas phase was performed using the (hyperchem-8.07) program for molecular mechanics and semi-empirical computations. The (PM3) approach was used to determine the heat of formation (ΔH˚f), binding energy (ΔEb), an
... Show MoreThe research aims to find approximate solutions for two dimensions Fredholm linear integral equation. Using the two-variables of the Bernstein polynomials we find a solution to the approximate linear integral equation of the type two dimensions. Two examples have been discussed in detail.
يشهد العالم تقدما في كافة مجالات الحياة المختلفة وتزداد الحياة صعوبة يوما بعد يوم, ويزداد البحث في كافة المجالات التي تعمل على خدمة الإنسان ولقد طال هذا التقدم النشاط الرياضي ,فقد يكون لتطور التدريب الرياضي وتنوع أساليبه الدور الكبير في تحقيق اللياقة البدنية التي تعد إحدى أهم الأهداف التي يرمي إليها الدرس في كلية التربية الرياضية . واللياقة البدنية تستمد أهميتها من كونها إحدى مكونات اللياقة الشاملة التي بدو
... Show MoreThe CdSe pure films and doping with Cu (0.5, 1.5, 2.5, 4.0wt%) of thickness 0.9μm have been prepared by thermal evaporation technique on glass substrate. Annealing for all the prepared films have been achieved at 523K in vacuum to get good properties of the films. The effect of Cu concentration on some of the electrical properties such as D.C conductivity and Hall effect has been studied.
It has been found that the increase in Cu concentration caused increase in d.c conductivity for pure CdSe 3.75×10-4(Ω.cm)-1 at room temperatures to maximum value of 0.769(Ω.cm)-1 for 4wt%Cu.All films have shown two activation energies, where these value decreases with increasing doping ratio. The maximum value of activation energy was (0.319)eV f