In folk medicine there are various medicinal amalgamation possessing hepatoprotective activity. This activity is of significance because several toxins cause liver injury. Hence, many pharmaceutical companies are targeting herbal medicines for the treatment of liver abnormalities and towards evolving a safe and effective formulation with desired route of administration. In current review we have focused on the studies showing hepatoprotective effect using marine compounds and plant derived compounds. Liver disorder, a global health problem, usually include acute or chronic hepatitis, heptoses, and cirrhosis. It may be due to toxic chemicals and certain antibiotics. Uncontrolled consumption of alcohol also affects liver in an unhealthy way. To cure liver disorders several formulations of medicinal plants are being used. It is observed that hepatoprotective effect of plant is mostly due to flavonoids, alkaloids, terpenoids, steroids, and glycoside. A single drug cannot be useful for all the types of liver disorders. Several plant extracts for liver illness results from poisonous chemicals, viruses, extra alcohol consumption, and repeated administration of medication. By using standards of protection and efficacy, manufacture of plant products need to be ruled out. Current review provides an understanding of ethnopharmocology, toxicology of several medicinal plants manifesting hepatoprotective potential. Despite of varied database analysis new discoveries and their probabilities, evidences on viral hepatitis treatment or liver cirrhosis is inadequate. Further information about phytotherapy, toxicology, quality control studies shall be endorsed. Further in depth studies are required to discover quality trait like SAR, MOA, safety and toxicity and therapeutic potential of phytoconstituents in clinical settings.
Ternary polymer blend of chitosan/poly vinyl alcohol/ poly vinyl pyrrolidone was prepared by solution castingmethod, nanocomposite was prepared by sonication method with nano Ag and Zn. All prepared compounds have been characterizedby FT-IR, SEM, DSC, as well as Biological activity. Antimicrobialactivity related to prepared blendsand Nanocomposites againstsix types of bacteria namely, Staphylococcus aureas, E. faecalis, S.typhi, P. aeruginosa, Bacillus subtilis, Escherichia coli andC. albicans fungal were examined and evaluated. The results reveal that the prepared polymer blends and nanocompositeshavegood antimicrobial activity against all kinds of microbials.
New substituted coumarins derivatives were synthesized by using nitration reaction to produce different nitro coumarin isomers which were separated from these isomers by using different solvent, and the reduction of nitro compounds was done to give corresponding amino coumarins. Temperature and reaction time of reaction were very important factors in determining the most productive nitro isotopes. A low temperature for three hours was sufficient to give a high product of a compound 6-nitro coumarin while increasing the temperature for a period of twenty-four hours that gave a high product of 8-nitro-coumarin. The synthesized compounds were confirmed by FT-IR,1 H-NMR, and13 C-NMR spectroscopy and all final compounds were tested for their ant
... Show MoreThe catalytic activity of faujasite type NaY catalysts prepared from local clay (kaolin) with different Si/Al ratio was studied using cumene cracking as a model for catalytic cracking process in the temperature range of 450-525° C, weight hourly space velocity (WHSV) of 5-20 h1, particle size ≤75μm and atmospheric pressure. The catalytic activity was investigated using experimental laboratory plant scale of fluidized bed reactor.
It was found that the cumene conversion increases with increasing temperature and decreasing WHSV. At 525° C and WHSV 5 h-1, the conversion was 42.36 and 35.43 mol% for catalyst with 3.54 Si/Al ratio and Catalyst with 5.75 Si/Al ratio, respectively, while at 450° C and at the same WHSV, the conversion w
|
Background: Essential oils extracted from plants have been widely used in antimicrobial activity, particularly the Callistemon viminalis, with a high number of essential oils extracted. Objectives: To identify the chemical composition of essential oil derived from Callistemon viminalis and evaluates its antimicrobial activity against selected bacterial and fungal strains. Subjects and methods: During the study, the antimicrobial activity of different selected essential oils on some bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella enteritidis, Staphylococcus aureus, and Streptococcus pneumonia) and fungus (Candida albicans) was evalua |
Thirty five samples were collected from patients (1-30) years old, suffered from, infected skin , rushes, boils , oral thrush, anal & vaginal itches. Candida albicans 57.3% (20 isolates) and Candida tropicalis 22.5% (8 isolates) Aspergillus fumegatus 11.5% (4 isolates) Aspergillus nigar 8.7%(3 isolates) , were isolated & identified from these samples. Alcoholic & water hot extracts of the punica granatum (Pomegranate) peels as well as the dried powder were prepared. The anti-fungal activity of the extracts was evaluated by means of the agar-well diffusion assay. The extract exhibited potent activity against yeast. The Minimum inhibitory concentra
... Show MoreMicrobial lipases today occupy a place of prominence among biocatalysts owing to their ability to catalyze awide variety of reactions in aqueous and non- aqueous media, A.baumannii were isolated from different clinical specimens from hospitalized patients from Baghdad hospitals and were detected by biochemical tests and API20E system. The percentage of isolation was (16.6%), A. baumannii is an increasingly multidrug – resistant (MDR), it showed high level of resistant to Ceftriaxon, Colistin, Piperacillin, Co-trimoxazol, Tertracycline, Carbenicillin, Amoxicillin, Penicillin G, Gentamicin and Ceftazidim , wherease the isolates were highly sensitive to Imipenem, Ciprofloxacin, Meropenem, Amikacin, and Cefotaxime.
... Show MoreThis study synthesized nanocomposite photocatalyst materials from a mixture of Cu2O nanoparticles, ZnO nanoparticles, and graphene oxide (GO) through coprecipitation and hydrothermal methods. This study aims to determine the optimum composition of Cu2O/ZnO/GO nanocomposites in degrading methylene blue. The nanocomposite was synthesized in two steps: 1 the synthesis of Cu2O and ZnO nanoparticles through the coprecipitation method and the preparation of GO through the modified Hummer method. 2 The preparation of Cu2O and ZnO nanoparticles mixtures with GO through the hydrothermal method to form Cu2O/ZnO/GO nanocomposites. The adsorption-photocatalysis process of methylene blue
... Show More