In recent years, observed focus greatly on gold nanoparticles synthesis due to its unique properties and tremendous applicability. In most of these researches, the citrate reduction method has been adopted. The aim of this study was to prepare and optimize monodisperse ultrafine particles by addition of reducing agent to gold salt, as a result of seed mediated growth mechanism. In this research, gold nanoparticles suspension (G) was prepared by traditional standard Turkevich method and optimized by studying different variables such as reactants concentrations, preparation temperature and stirring rate on controlling size and uniformity of nanoparticles through preparing twenty formulas (G1-G20). Subsequently, the selected formula that prepared from the best tested condition was further optimized by preparing it using inverse method via the addition of gold salt to the reducing agent in opposite to the previous traditional method (G21). The optimized gold nanoparticles were characterized by SEM, EDX, TEM and zeta potential. The obtained results indicated that (G21) with reactants concentrations of 0.5mM and 10mM for HAuCl4.3H2O and trisodium citrate dihydrate respectively, 65°C of preparation temperature and 1500rpm of stirring rate was chosen as an optimized formula according to AFM provided gold nanoparticles with smoother surface, smaller size (average 8.75nm) with more uniform size distribution (7.32%) as well as short over all preparation time (27minutes). In addition to that all results of SEM, EDX and TEM indicated uniform spherical shape with zeta potential of -47.87. In conclusion, inversed method is promising for the preparation of gold nanoparticles with high monodispersity.
Abstract: In this research, nanofibers have been prepared by using an electrospinning method. Three types of polymer (PVA, VC, PMMA) have been used with different concentration. The applied voltage and the gap length were changed. It was observed that VC is the best polymer than the other types of polymers.
Gamma - irradiation effect on polymethylmethacrylate (PMMA) samples has been studied using Positron Annihilation Lifetime (PAL) method. The orthopositronium (o-Ps) lifetime τ3, hence the o-ps parameters, the volume hole size (Vh) and the free volume fraction (Ꞙh) in the irradiated samples were measured as a function of gamma-irradiation dose up to 28.05 kGy. It has been shown that τ 3, Vh, and Ꞙh, are increasing in general with increasing gamma-dose, to reach a maximum percentage increment of 22.42% in τ3, 60% in Vh and 29.5% in Ꞙh, at. 2.55 kGy, whereas τ2 reaches maximum increment of 119. 7% at 7.65 kGy. The results s
... Show MoreBackground: Ceramic veneers represent the treatment of choice in minimally invasive esthetic dentistry; one of the critical factors in their long term success is marginal adaptation. The aim of the present study is to evaluate the marginal gap of ceramic veneers by using two different fabrication techniques and two different designs of preparation. Material and methods: A typodont maxillary central incisor used in the preparation from which metal dies were fabricated, which were in turn used to make forty stone dies. The dies divided into four experimental groups, each group had ten samples: A1: prepared with butt-joint incisal reduction and restored with IPS e.max CAD, A2: prepared with overlapped incisal reduction and restored with IPS e.
... Show MoreThe massive distribution and development in the digital images field with friendly software, that leads to produce unauthorized use. Therefore the digital watermarking as image authentication has been developed for those issues. In this paper, we presented a method depending on the embedding stage and extraction stag. Our development is made by combining Discrete Wavelet Transform (DWT) with Discrete Cosine Transform (DCT) depending on the fact that combined the two transforms will reduce the drawbacks that appears during the recovered watermark or the watermarked image quality of each other, that results in effective rounding method, this is achieved by changing the wavelets coefficients of selected DWT sub bands (HL or HH), followed by
... Show MoreThe fingerprints are the more utilized biometric feature for person identification and verification. The fingerprint is easy to understand compare to another existing biometric type such as voice, face. It is capable to create a very high recognition rate for human recognition. In this paper the geometric rotation transform is applied on fingerprint image to obtain a new level of features to represent the finger characteristics and to use for personal identification; the local features are used for their ability to reflect the statistical behavior of fingerprint variation at fingerprint image. The proposed fingerprint system contains three main stages, they are: (i) preprocessing, (ii) feature extraction, and (iii) matching. The preprocessi
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
There is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into
... Show MoreThis work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it
... Show More