Fiber optics technology has shown immense applications in the areas of medicine, telecommunication, and imaging. For these particular applications, it requires fibers with precise cleaving. In this paper, we will demonstrate a quick, simple and efficient cleaving method that can result in a high-quality fiber surface that works well for many fiber-optic applications. The smooth tip and good surface quality obtained on the cleaved surface of optical fiber is demonstrated by using a microscope imaging system and was flat surface with a 900 angle for perpendicular cleavages. The precision cleaver provides smooth and high-quality cleaves on single-fiber surfaces as opposed to the ruby scribe pen. The defects that may occur during the cleaving process are clearly explained here. Our obtained images demonstrated that these precision cleavers have great potential to cut various fibers at one time with high speed, good efficiency, and accuracy. We also found that this cleavage technique produced the greatest laser intensity and the best light dispersion pattern, while the scribe pen resulted in undesirable levels of laser intensity and light dispersion pattern.
The present work reports on the performance of three types of nanofiltration membranes in the removal of highly polluting and toxic lead (Pb2+) and cadmium (Cd2+) from single and binary salt aqueous solutions simulating real wastewaters. The effect of the operating variables (pH (5.5-6.5), types of NF membrane and initial ions concentration (10-250 ppm)) on the separation process and water flux was investigated. It was observed that the rejection efficiency increased with increasing pH of solution and decreasing the initial metal ions concentrations. While the flux decreased with increasing pH of solution and increasing initial metal ions concentrations. The maximum rejection of lead and cadmium ion
... Show MoreIn this paper, A.C conductivity of micro and nano grain size- TiO2 filled epoxy composites is measured. The dielectric material used is epoxy resin, while micro and nano-sized titanium dioxide (TiO2) of grain size (1.5μm, and 50nm) was used as filler at low filler concentrations by weight (3%, and 5%). Additionally the effect of annealing temperature range (293-373)º K and at a frequency range of 102-106 Hz on the A.C conductivity of the various specimens was studied.
The result of real permittivity for micro and nanocomposite show that the real permittivity increases with decreasing frequency at range of 102-106Hz. The micron-filled material has a higher real relative permittivity than the nano-filled this is true at all the temper
An innovative desalination method called electrosorption or capacitive deionization (CDI) has significant benefits for wastewater treatment. This process is performed by using a carbon fiber electrode as a working electrode to remove hexavalent chromium ions from an aqueous solution. The pH, NaCl concentration, and cell voltage were optimized using the Box-Behnken experimental design (BDD) in response surface methodology (RSM) to study the effects and interactions of selected variables. To attain the relationship between the process variables and chromium removal, the experimental data were subjected to an analysis of variance and fitted with a quadratic model. The optimum conditions to remove Cr(VI) ions were: pH of 2, a cell voltage of 4.
... Show MoreThis work focused on principle of higher order mode excitation using in- line Double Clad Multi-Mode Mach-Zehnder Interferometer (DC-MM-MZI). The DC-MM-MZI was designed with 50 cm etched MMF. The etching length is 5cm. The tenability of this interferometer was studied using opt grating ver.4.2.2 and optiwave
ver. 7 simulator. After removing (25, 35, 45, 55) μm from MMF and immersing this segment of MMF with water bath contained distilled water and ethanol, in addition to, air. Pulsed laser source centered at 1546.7nm ,pulse width 10ns and peak power 1.33mW was propagated via this interferometer Maximum modes were obtained in case of air surrounded media which are 9800 and 25 um removed cladding layer, with peak power 49.800 m
Anodic electrodeposition was used to synthesize a composite electrode of nanostructured manganese dioxide/carbon fiber (CF) galvanostatically. Different characterization results of the nanostructured MnO2 were obtained by varying the H2SO4 concentration and the current density. Field emission scanning electron microscopy, X‐ray diffraction, and atomic force microscopy were utilized to characterize the prepared composite electrodes. The best conditions were: 0.3 mA cm−2 current density and 0.64 M H2SO4 concentration. The electrosorption performance of the MnO
The laser micro-cutting process is the most widely commonly applied machining process which can be applied to practically all metallic and non-metallic materials. While this had challenges in cutting quality criteria such as geometrical precision, surface quality and numerous others. This article investigates the laser micro-cutting of PEEK composite material using nano-fiber laser, due to their significant importunity and efficiency of laser in various manufacturing processes. Design of experiential tool based on Response Surface Methodology (RSM)-Central Composite Design (CCD) used to generate the statistical model. This method was employed to analysis the influence of parameters including laser speed,
... Show MoreIn this work, a solid core photonic crystal fibre (SC-PCF) has been designed with endlessly single mode of which both centerd core and holes in the cladding are organized by circles. The designed SC-PCF has a single solid centerd core which is ringed by a six rings hexagonal cladding. The computation of SC-PCF is achieved by using the finite element method (FEM) with perfectly matched layer (PML) boundary condition. All the designed factors like dimensions and distance of both core and cladding areas have varied with an optimized structure. After ending the numerical calculation, the results shows that there are a link between the air hols in the cladding , and the different normaliz
... Show MoreThis research has studied the effect of addition glass fibers (woven and chopped)
and Zirconium oxide Nano-particles (ZrO2) with different weight percent to the
conventional poly (methyl methacrylate) (PMMA). The prepared Nano-crystalline
ZrO2 powder with particle size of about 95nm was syntheses directly by sol-gel
method. The gel dried at 100oC for 1 hour and annelid at 400oC for 3 hours.
The conventional acrylic resin prepared with 2:1 powder to liquid ratio to prepare
pure sample, composite samples prepared by reinforcing PMMA with woven or
chopped glass fiber (8, 12) wt.%, and reinforcing by (1,2,3) wt.% of prepared ZrO2
Nano-powder.
The structural tests include: (XRD, AFM, and FTIR). The crystallized phas
In the drilling and production operations, the effectiveness of cementing jobs is crucial for efficient progress. The compressive strength of oil well cement is a key characteristic that reflects its ability to withstand forceful conditions over time. This study evaluates and improves the compressive strength and thickening time of Iraqi oil well cement class G from Babylon cement factory using two types of additives (Nano Alumina and Synthetic Fiber) to comply with the American Petroleum Institute (API) specifications. The additives were used in different proportions, and a set of samples was prepared under different conditions. Compressive strength and thickening time measurements were taken under different conditions. The amoun
... Show MoreThe Electro-Fenton oxidation process is one of the essential advanced electrochemical oxidation processes used to treat Phenol and its derivatives in wastewater. The Electro-Fenton oxidation process was carried out at an ambient temperature at different current density (2, 4, 6, 8 mA/cm2) for up to 6 h. Sodium Sulfate at a concentration of 0.05M was used as a supporting electrolyte, and 0.4 mM of Ferrous ion concentration (Fe2+) was used as a catalyst. The electrolyte cell consists of graphite modified by an electrodepositing layer of PbO2 on its surface as anode and carbon fiber modified with Graphene as a cathode. The results indicated that Phenol concentration decreases with an increase in current dens
... Show More