In real-life problems, we use square roots in natural distributions such as (the probability density function), distances and lengths in the Pythagorean theorem, and quadratic formulas in (the height of falling objects), radius of circles, harmonic movements (pendulum and springs), and standard deviation in statistics. We have observed that using fuzzy sets in real-life problems is more convenient than ordinary sets. Therefore, they are important in algebraic structures. As a result, more effort has been made to study square root structures in fuzzy sets. This paper introduces the notion of square roots fuzzy of QS-ideals on QS-algebras and some important characteristics. Some illustrative examples have been provided which prove tha
... Show MoreIn this paper, the concept of normalized duality mapping has introduced in real convex modular spaces. Then, some of its properties have shown which allow dealing with results related to the concept of uniformly smooth convex real modular spaces. For multivalued mappings defined on these spaces, the convergence of a two-step type iterative sequence to a fixed point is proved
Objective: This study aims to assess the efficacy of CT-guided true-cut biopsy as a less invasive and cost-effective diagnostic technique for peripherally placed lung lesions. Methods: fourty patients with solitary lung nodule were involved in this study, true cut biopsies under Ct guide was taken then processed for routine H&E staining. Results: different pathological features can be identified with different pathological features giving primary diagnostic screening for lung cancer Conclusion: CT guided thoracic lesion biopsy is very efficient, cost-effective and less invasive technique when compared with the thoracic surgery
Objective: This study aims to assess the efficacy of CT-guided true-cut biopsy as a less invasive and cost-effective diagnostic technique for peripherally placed lung lesions.
To obtain the approximate solution to Riccati matrix differential equations, a new variational iteration approach was proposed, which is suggested to improve the accuracy and increase the convergence rate of the approximate solutons to the exact solution. This technique was found to give very accurate results in a few number of iterations. In this paper, the modified approaches were derived to give modified solutions of proposed and used and the convergence analysis to the exact solution of the derived sequence of approximate solutions is also stated and proved. Two examples were also solved, which shows the reliability and applicability of the proposed approach.
We present a reliable algorithm for solving, homogeneous or inhomogeneous, nonlinear ordinary delay differential equations with initial conditions. The form of the solution is calculated as a series with easily computable components. Four examples are considered for the numerical illustrations of this method. The results reveal that the semi analytic iterative method (SAIM) is very effective, simple and very close to the exact solution demonstrate reliability and efficiency of this method for such problems.
The main purpose of this paper, is to characterize new admissible classes of linear operator in terms of seven-parameter Mittag-Leffler function, and discuss sufficient conditions in order to achieve certain third-order differential subordination and superordination results. In addition, some linked sandwich theorems involving these classes had been obtained.
In this paper, a new analytical method is introduced to find the general solution of linear partial differential equations. In this method, each Laplace transform (LT) and Sumudu transform (ST) is used independently along with canonical coordinates. The strength of this method is that it is easy to implement and does not require initial conditions.
Oscillation criteria are obtained for all solutions of the first-order linear delay differential equations with positive and negative coefficients where we established some sufficient conditions so that every solution of (1.1) oscillate. This paper generalized the results in [11]. Some examples are considered to illustrate our main results.