Preferred Language
Articles
/
bhbXE4gBVTCNdQwCinNA
Electrical and thermal characteristics of MWCNTs modified carbon fiber/epoxy composite films
...Show More Authors
Abstract<p>To enhance interfacial bonding between carbon fibers and epoxy matrix, the carbon fibers have been modified with multiwall carbon nanotubes (MWCNTs) using the dip- coating technique. FT-IR spectrum of the MWCNTs shows a peak at 1640 cm<sup>−1</sup> corresponding to the stretching mode of the C=C double bond which forms the framework of the carbon nanotube sidewall. The broad peak at 3430 cm<sup>−1</sup> is due to O–H stretching vibration of hydroxyl groups and the peak at 1712 cm<sup>−1</sup> corresponds to the carboxylic (C=O) group attached to the carbon fiber. The peaks at 2927 cm<sup>−1</sup> and 2862 cm<sup>−1</sup> are assigned to C–H stretching vibration of epoxy produced at the defect sites of acid-oxidized carbon fiber surface. SEM image shows a better interface bonding between the fiber and the matrix of modified composites (MWCNTs-CF/Ep) than those of unmodified composite. The loss factor curve of CF-MWCNTs/Ep composites is the narrowest compared with neat epoxy and CF/Ep composites which evinces that the length distribution range of molecular chain segments in the matrix is the narrowest. From the dependence of the AC conductivity on temperature, we can see that σ<sub>AC</sub> increases when temperature increases. The increase in electrical conductivity of the composites may be a result of the increased chain ordering due to annealing effect. The use of MWCNTs to modify the surface of carbon fiber resulted in a large amount of junctions among MWCNT causing an increase in the electrical and thermal conductivity by forming conducting paths in the matrix. The MWCNTs-CF/Ep composite shows better thermal stability than unmodified composites. The strong interaction between CF and MWCNTs can retard diffusion of small molecules from the resin matrix at high temperature and hence, result in the improved thermal stability of the modified CF/Ep composite.</p>
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jan 01 2019
Journal Name
Energy Procedia
Studying The Effect of The Type of Substrate on The Structural, Morphology and Optical Properties of TiO2 Thin Films Prepared by RF Magnetron Sputtering
...Show More Authors

View Publication
Crossref (12)
Crossref
Publication Date
Thu Jan 24 2019
Journal Name
Al-kindy College Medical Journal
Clinical and experimental Study to evaluate the effect of Biphasic calcium phosphate collagen composite (cpcc) on healing of bone defects after oral surgical procedures
...Show More Authors

Background: A recent discoveries used for reconstruction in maxillofacial surgery is the composite bone graft materials. The availability of collagen I matrix make our choice to use this material in surgery .It is biomaterials that its structure could be modified by simple techniques. Studies to find a new materials use for bone reconstruction is to overcome the disadvantages of autogenous bone and the synthetic resorbable bone substitutes.

Objectives: This study was done to evaluate the effect of biphasic calcium phosphate collagen composite (ccpc) on healing of bone defects after oral surgical procedures.

Type of the study: A cross sectional study.

Method: It involved 60 patients, 35 male and 25 female, age (15-

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Dec 30 2004
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
The Influence of Temperature and Flow Velocity on the Corrosion Inhibition of Low Carbon Tubes in Recirculating Water System by a Dicomponent Inhibitor Blend
...Show More Authors

View Publication Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Microporous And Mesoporous Materials
Green synthesis of porous carbon cross-linked Y zeolite nanocrystals material and its performance for adsorptive removal of a methyl violet dye from water
...Show More Authors

The cost-effective carbon cross-linked Y zeolite nanocrystals composite (NYC) was prepared using an eco-friendly substrate prepared from bio-waste and organic adhesive at intermediate conditions. The green synthesis method dependent in this study assures using chemically harmless compounds to ensure homogeneous distribution of zeolite over porous carbon. The greenly prepared cross-linked composite was extensively characterized using Fourier transform infrared, nitrogen adsorption/desorption, Field emission scanning electron microscope, Dispersive analysis by X-ray, Thermogravimetric analysis, and X-ray diffraction. NYC had a surface area of 176.44 m2/g, and a pore volume of 0.0573 cm3/g. NYC had a multi-function nature, sustained at a long-

... Show More
View Publication
Crossref (40)
Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
The Remediation of Congo Red-Contaminated Groundwater by using a Permeable Reactive Barrier Through Modified Waterworks Sludge MgAl-LDH
...Show More Authors

This investigation aims to explore the potential of waterworks sludge (WS), low-cost byproduct of water treatment processes, as a sorbent for removing Congo Red (CR) dyes. This will be achieved by precipitating nano-sized (MgAl-LDH)-layered double hydroxide onto the surface of the sludge. The efficiency of utilizing MgAl-LDH to modify waterworks sludge (MWS) for use in permeable reactive barrier technology was confirmed through analysis with Fourier transform infrared and X-ray diffraction. The isotherm model was employed to elucidate the adsorption mechanisms involved in the process. Furthermore, the COMSOL model was utilized to establish a continuous testing model for the analysis of contaminant transport under diverse conditions. A st

... Show More
View Publication
Scopus Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
The Remediation of Congo Red-Contaminated Groundwater by using a Permeable Reactive Barrier Through Modified Waterworks Sludge MgAl-LDH
...Show More Authors

This investigation aims to explore the potential of waterworks sludge (WS), low-cost byproduct of water treatment processes, as a sorbent for removing Congo Red (CR) dyes. This will be achieved by precipitating nano-sized (MgAl-LDH)-layered double hydroxide onto the surface of the sludge. The efficiency of utilizing MgAl-LDH to modify waterworks sludge (MWS) for use in permeable reactive barrier technology was confirmed through analysis with Fourier transform infrared and X-ray diffraction. The isotherm model was employed to elucidate the adsorption mechanisms involved in the process. Furthermore, the COMSOL model was utilized to establish a continuous testing model for the analysis of contaminant transport under diverse conditions.

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Jun 15 2022
Journal Name
Journal Of Baghdad College Of Dentistry
Surface Characterization of PEKK Modified by stron-tium –hydroxyapatite coating as implant material Via the magnetron sputtering Deposition technique
...Show More Authors

Background: The best material for dental implants is polyetherketoneketone (PEKK). However, this substance is neither osteoinductive nor osteoconductive, preventing direct bone apposition. Modifying the PEKK with bioactive elements like strontium hydroxyapatite is one method to overcome this (Sr-HA). Due to the technique's capacity to provide better control over the coating's properties, RF magnetron sputtering has been found to be a particularly useful technique for deposition.

Materials and methods : With specific sputtering conditions, the RF magnetron technique was employed to provide a homogeneous and thin coating on Polyetherketoneketone substrates.. the coatings were characterized by Contact angle, adhesion test, X-ray dif

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (10)
Scopus Crossref
Publication Date
Wed Jun 15 2022
Journal Name
Journal Of Baghdad College Of Dentistry
Surface Characterization of PEKK Modified by stron-tium –hydroxyapatite coating as implant material Via the magnetron sputtering Deposition technique
...Show More Authors

Background: The best material for dental implants is polyetherketoneketone (PEKK). However, this substance is neither osteoinductive nor osteoconductive, preventing direct bone apposition. Modifying the PEKK with bioactive elements like strontium hydroxyapatite is one method to overcome this (Sr-HA). Due to the technique's capacity to provide better control over the coating's properties, RF magnetron sputtering has been found to be a particularly useful technique for deposition. Materials and methods : With specific sputtering conditions, the RF magnetron technique was employed to provide a homogeneous and thin coating on Polyetherketoneketone substrates.. the coatings were characterized by Contact angle, adhesion test, X-ray

... Show More
Crossref (10)
Crossref
Publication Date
Thu Sep 06 2018
Journal Name
Al-khwarizmi Engineering Journal
Bone Defect Animal Model for Hybrid Polymer Matrix Nano Composite as Bone Substitute Biomaterials
...Show More Authors

Addition of bioactive materials such as Titanium oxide (TiO2), and incorporation of bio inert ceramic such as alumina (Al2O3), into polyetheretherketone (PEEK) has been adopted as an effective approach to improve bone-implant interfaces. In this paper, hot pressing technique has been adopted as a production method. This technique gave a homogenous distribution of the additive materials in the proposed composite biomaterial. Different compositions and compounding temperatures have been applied to all samples. Mechanical properties and animal model have been studied in all different production conditions. The results of these new TiO2/Al2O3/PEEK biocomposites with different

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Dec 19 2017
Journal Name
Al-khwarizmi Engineering Journal
Improve Wear Resistance on Al 332 Alloy Matrix- Micro -Nano Al2O3 Particles Reinforced Composite
...Show More Authors

The wear behavior of alumina particulate reinforced A332 aluminium alloy composites produced by a stir casting process technique were investigated. A pin-on-disc type apparatus was employed for determining the sliding wear rate in composite samples at different grain size (1 µm, 12µm, 50 nm) and different weight percentage (0.05-0.1-0.5-1) wt% of alumina respectively. Mechanical properties characterization which strongly depends on microstructure properties of reinforcement revealed that the presence of ( nano , micro) alumina particulates lead to simultaneous increase in hardness, ultimate tensile stress (UTS), wear resistances. The results revealed that UTS, Hardness, Wear resistances increases with the increase in the percentage of

... Show More
View Publication Preview PDF