Preferred Language
Articles
/
bRfWXJMBVTCNdQwC29Le
Comparative study of logistic regression and artificial neural networks on predicting breast cancer cytology
...Show More Authors

<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver operating characteristic ROC).   Dataset was downloaded from UCI ml repository; it is composed of 9 attributes and 699 samples. The findings are clearly showing that the RBF NN classifier is the best in prediction of the type of breast tumors since it had recorded the highest performance in terms of correct classification rate (accuracy), sensitivity, specificity, and AUC (area under Receiver Operating Characteristic ROC) among all other models.</p>

Scopus Crossref
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Advanced Pharmaceutical Technology &amp; Research
Exploring the modulation of MLH1 and MSH2 gene expression in hesperetin-treated breast cancer cells (BT-474)
...Show More Authors
A<sc>BSTRACT</sc> <p>The major mortality factor for women globally is breast cancer, and current treatments have several adverse effects. Hesperetin (HSP) is a flavone that occurs naturally with anti-tumor capabilities and has been investigated as a potential treatment for cancer. This study aimed to investigate the cytotoxic and anti-malignant potential of HSP on breast cancer cells (BT-474) and normal cells (MCF-10a). The results indicated that HSP has dose-dependent cytotoxicity in BT-474 and MCF-10a cells. The elevated concentration of HSP lowered cell viability and proliferation. The half-maximal inhibitory concentration (IC<sub>50</sub>) of HSP in BT-</p> ... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Comparative Study of Genomic DNA Extraction Protocols from Whole Blood for P53 Gene Polymorphism in Persons with and without Prostate Cancer
...Show More Authors

In latest decades, genetic methods have developed into a potent tool in a number of life-attaching applications. In research looking at demographic genetic diversity, QTL detection, marker-assisted selection, and food traceability, DNA-based technologies like PCR are being employed more and more. These approaches call for extraction procedures that provide efficient nucleic acid extraction and the elimination of PCR inhibitors. The first and most important stage in molecular biology is the extraction of DNA from cells. For a molecular scientist, the high quality and integrity of the isolated DNA as well as the extraction method's ease of use and affordability are crucial factors. The present study was designed to establish a simple, fast

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Oct 14 2019
Journal Name
Turkish Journal Of Biology
E2F6 is essential for cell viability in breast cancer cells during replication stress
...Show More Authors

Abstract: E2F6 is a member of the E2F family of transcription factors involved in regulation of a wide variety of genes through both activation and repression. E2F6 has been reported as overexpressed in breast cancers but whether or not this is important for tumor development is unclear. We first checked E2F6 expression in tumor cDNAs and the protein level in a range of breast cancer cell lines. RNA interference-mediated depletion was then used to assess the importance of E2F6 expression in cell lines with regard to cell cycle profile using fluorescence-activated cell sorting and a cell survival assay using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The overexpression of E2F6 was confirmed in breast tumor cDNA samp

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Clinical Plasma Medicine
Breast cancer treatment using cold atmospheric plasma generated by the FE-DBD scheme
...Show More Authors

Background Cold atmospheric plasma (CAP) is widely used in the cancer therapy field. This type of plasma is very close to room temperature. This paper illustrates the effects of CAP on breast cancer tissues both in vivo and in vitro. Methods The mouse mammary adenocarcinoma cell line AN3 was used for the in vivo study, and the MCF7, AMJ13, AMN3, and HBL cell lines were used for the in vitro study. A floating electrode-dielectric barrier discharge (FE-DBD) system was used. The cold plasma produced by the device was tested against breast cancer cells. Results The induced cytotoxicity percentages were 61.7%, 68% and 58.07% for the MCF7, AMN3, and AMJ13 cell lines, respectively, whereas the normal breast tissue HBL cell line exhibited very li

... Show More
View Publication
Scopus (53)
Crossref (46)
Scopus Clarivate Crossref
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Comparison of Artificial Neural Network and Box- Jenkins Models to Predict the Number of Patients with Hypertension in Kalar
...Show More Authors

    Artificial Neural Network (ANN) is widely used in many complex applications. Artificial neural network is a statistical intelligent technique resembling the characteristic of the human neural network.  The prediction of time series from the important topics in statistical sciences to assist administrations in the planning and make the accurate decisions, so the aim of this study is to analysis the monthly hypertension in Kalar for the period (January 2011- June 2018) by applying an autoregressive –integrated- moving average model  and artificial neural networks and choose the best and most efficient model for patients with hypertension in Kalar through the comparison between neural networks and Box- Je

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu May 10 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
An Improvement of MRI Brain Images Classification Using Dragonfly Algorithm as Trainer of Artificial Neural Network
...Show More Authors

  Computer software is frequently used for medical decision support systems in different areas. Magnetic Resonance Images (MRI) are widely used images for brain classification issue. This paper presents an improved method for brain classification of MRI images. The proposed method contains three phases, which are, feature extraction, dimensionality reduction, and an improved classification technique. In the first phase, the features of MRI images are obtained by discrete wavelet transform (DWT). In the second phase, the features of MRI images have been reduced, using principal component analysis (PCA). In the last (third) stage, an improved classifier is developed. In the proposed classifier, Dragonfly algorithm is used instead

... Show More
View Publication Preview PDF
Crossref (14)
Crossref
Publication Date
Sat Jun 30 2007
Journal Name
Al-kindy College Medical Journal
Diagnostic Approach of Atypical Cells in Effusion Cytology Using Computerized Image Analysis
...Show More Authors

Background: Cytology is one of the important diagnostic tests done on effusion fluid. It can detect malignant cells in up to 60% of malignant cases. The most important benign cell present in these effusions is the mesothelial cell. Mesothelial atypia can be striking andmay simulate metastatic carcinoma. Many clinical conditions may produce such a reactive atypical cells as in anemia,SLE, liver cirrhosis and many other conditions. Recently many studies showed the value of computerized image analysis in differentiating atypical cells from malignant adenocarcinoma cells in effusion smears. Other studies support the reliability of the quantitative analysisand morphometric features and proved that they are objective prognostic indices. Method

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Evaluation of Ceruloplasmin Oxidase Activity in Sera of Breast Cancer Individuals in Kurdistan Region/ Iraq
...Show More Authors

Ceruloplasmin is considered the main copper transport protein which is proposed to have a role in cancer. Ceruloplasmin is an acute phase reactant and antioxidant enzyme, has been found to be increased in sera of patients with several types of cancers including breast cancer.

The aim of present study was to determine of ceruloplasmin oxidase activity, specific activity, iron concentration in sera of patients with breast cancer and comparing with healthy group, and the ability of using enzyme as a tumor marker for breast cancer.

This study was performed from November 2018 to January 2019, blood samples were collected from breast cancer patients in Nanakeli Hospital in Erbil city. Study was included (65) female patients wit

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Apr 01 2018
Journal Name
Journal Of Engineering/
Water quality assessment and total dissolved solids prediction using artificial neural network in Al-Hawizeh marsh south of Iraq
...Show More Authors

The Iraqi marshes are considered the most extensive wetland ecosystem in the Middle East and are located in the middle and lower basin of the Tigris and Euphrates Rivers which create a wetlands network and comprise some shallow freshwater lakes that seasonally swamped floodplains. Al-Hawizeh marsh is a major marsh located east of Tigris River south of Iraq. This study aims to assess water quality through water quality index (WQI) and predict Total Dissolved Solids (TDS) concentrations in Al-Hawizeh marsh based on artificial neural network (ANN). Results showed that the WQI was more than 300 for years 2013 and 2014 (Water is unsuitable for drinking) and decreased within the range 200-300 in years 2015 and 2016 (Very poor water). The

... Show More
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Engineering
Water Quality Assessment and Total Dissolved Solids Prediction using Artificial Neural Network in Al-Hawizeh Marsh South of Iraq
...Show More Authors

The Iraqi marshes are considered the most extensive wetland ecosystem in the Middle East and are located in the middle and lower basin of the Tigris and Euphrates Rivers which create a wetlands network and comprise some shallow freshwater lakes that seasonally swamped floodplains. Al-Hawizeh marsh is a major marsh located east of Tigris River south of Iraq. This study aims to assess water quality through water quality index (WQI) and predict Total Dissolved Solids (TDS) concentrations in Al-Hawizeh marsh based on artificial neural network (ANN). Results showed that the WQI was more than 300 for years 2013 and 2014 (Water is unsuitable for drinking) and decreased within the range 200-300 in years 2015 and 2016 (Very poor water). The develope

... Show More