<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver operating characteristic ROC). Dataset was downloaded from UCI ml repository; it is composed of 9 attributes and 699 samples. The findings are clearly showing that the RBF NN classifier is the best in prediction of the type of breast tumors since it had recorded the highest performance in terms of correct classification rate (accuracy), sensitivity, specificity, and AUC (area under Receiver Operating Characteristic ROC) among all other models.</p>
Angiogenesis is important for tissue during normal physiological processes as well as in a number of diseases, including cancer. Drug resistance is one of the largest difficulties to antiangiogenesis therapy. Due to their lower cytotoxicity and stronger pharmacological advantage, phytochemical anticancer medications have a number of advantages over chemical chemotherapeutic drugs. In the current study, the effectiveness of AuNPs, AuNPs-GAL, and free galangin as an antiangiogenesis agent was evaluated. Different physicochemical and molecular approaches have been used including the characterization, cytotoxicity, scratch wound healing assay, and gene expression of VEGF and ERKI in MCF-7 and MDA-MB-231 human breast cancer cell line. Re
... Show MoreA new synthesis of Schiff (K) 6 and Mannich bases (Q) 7 had formed compound (Q) 7 by reacting compound (K) with N-methylaniline at the presence of formalin 35% to given Mannich base (Q). Additionally, new complexes were formed by reacting Schiff base (K) with metal salts CuCl2·2H2O, PdCl2·2H2O, and PtCl6·6H2O by 2:1 of M:L ratio. New ligands and their complexes were characterized, exanimated, and confirmed through several techniques, including FTIR, UV-visible, 1H-NMR, 13C-NMR spectroscopy, CHN analysis, FAA, TG, molar conductivity, and magnetic susceptibility. These compounds and their complexes were screened against breast cancer cells. It was determined that several of these compounds had a significant anti-breast cancer effec
... Show MoreObjective This research investigates Breast Cancer real data for Iraqi women, these data are acquired manually from several Iraqi Hospitals of early detection for Breast Cancer. Data mining techniques are used to discover the hidden knowledge, unexpected patterns, and new rules from the dataset, which implies a large number of attributes. Methods Data mining techniques manipulate the redundant or simply irrelevant attributes to discover interesting patterns. However, the dataset is processed via Weka (The Waikato Environment for Knowledge Analysis) platform. The OneR technique is used as a machine learning classifier to evaluate the attribute worthy according to the class value. Results The evaluation is performed using
... Show MoreBackground: Although, different protocols of chemotherapy are recommended for the treatment of metastatic breast cancer, still response rates are variable.
Objectives: The aim of this study is to investigate the effects and correlation of different chemotherapy administered to metastatic breast cancer patients on serum levels of some biomarkers.
Patients and methods: Thirty metastatic breast cancer patients were enrolled in the study. The patients received different protocols of chemotherapy. Blood samples were taken from the patients before and after the last cycle of each protocol and from 20 healthy control and serum levels of biomarkers IL-6, leptin, CA 15-3 and p53 were estimated by Elisa.
Results: The mean serum levels of
Interleukin-33 [IL-33] is a specific ligand for the ST2 receptor, and a member of the
IL-1 family. It is a dual-function protein that acts both as an extracellular alarmin cytokine,
and an as an intracellular nuclear factor participates in maintaining barrier function by
regulating gene expression of IL-33 modulating tumor growth and anti-tumor immunity in
cancer patients. The present study aimed to investigate the role of IL-33 serum level and gene
polymorphism in Iraqi women with breast cancer. Materials and methods: Blood samples
were collected from 66 Iraqi patient women diagnosed with breast cancer, which were divided
into two groups: pre-treatment [PT] and under treatment with chemotherapy [UTC] patients in
Background: Breast cancer account for 29% of all newly diagnosed cancer in female and is responsible for 14% of cancer related deaths in women. Breast cancer is basically detected either during a screening tests, before symptoms have appeared, or after a woman notices a mass. Overall risk doubles each decade until the menopause, when the increase slows down or remains stable.
Objective: to find the correlation between the tumor size and grade and involvement of axillary lymph node.
Patients and methods: a continuous prospective study of 50 patients from 1st January 2016 to 1st January 2017 in Baghdad teaching hospital at 1st surgical floor, where almost all patients with breast cancer operated on by modified radical mastectomy and
Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing artificial TABU algorithm to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as sport, chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement.
level of effectiveness of Glutathione - S - Transferees (GST), Glutathione peroxides (GPX),Malondialdehyde (MDA) the product of lipid peroxidation and some trace elements ( zinc,seleinum,iron ,copper ) had been measured in sera of (50) women with breast disease.which had been divided to : Control group (25),The first group (A) benign breast tumors (25),the second group (B) breast cancer (25). The results showed a clear moral high level of Glutathione - S - Transferees (GST), Glutathione peroxidase (GPX) , and Malondialdehyde (MDA) level in breast cancer group while a slight increase were observed in the levels of these enzymes and(MDA) in benign breast group. A significant reduction was evident in the levels of selenium and zinc
... Show MoreBackground: Breast cancer ranks the first among the Iraqi population since three decades and is currently forming a major public health problem being the second cause of death women. Novel management of breast cancer depends upon precise evaluation of their molecular subtypes; identified by Hormone (Estrogen and Progesterone) receptors and HER2 contents of the primary tumor.
Objective: To assess the rates of the different molecular breast cancer subtypes in the examined tissue specimens belonging to females diagnosed with breast cancer in Iraq; correlating the findings with those reported in the literature at the regional and global levels.
Patients and Methods: This retrospective study documented the findings of tissue biopsy exam
Osteoarthritis (OA) is a disease of human joints, especially the knee joint, due to significant weight of the body. This disease leads to rupture and degeneration of parts of the cartilage in the knee joint, which causes severe pain. Diagnosis of this disease can be obtained through X-ray. Deep learning has become a popular solution to medical issues due to its fast progress in recent years. This research aims to design and build a classification system to minimize the burden on doctors and help radiologists to assess the severity of the pain, enable them to make an optimal diagnosis and describe the correct treatment. Deep learning-based approaches, such as Convolution Neural Networks (CNNs), have been used to detect knee OA usin
... Show More