Preferred Language
Articles
/
bRb1DIcBVTCNdQwCUTOQ
A Viscoplastic Modeling for Permanent Deformation Prediction of Rubberized and Conventional Mix Asphalt
...Show More Authors

Crossref
View Publication
Publication Date
Mon Dec 02 2024
Journal Name
Engineering, Technology & Applied Science Research
An Artificial Neural Network Prediction Model of GFRP Residual Tensile Strength
...Show More Authors

This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperatur

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Permeability Prediction in One of Iraqi Carbonate Reservoir Using Statistical, Hydraulic Flow Units, and ANN Methods
...Show More Authors

   Permeability is an essential parameter in reservoir characterization because it is determined hydrocarbon flow patterns and volume, for this reason, the need for accurate and inexpensive methods for predicting permeability is important. Predictive models of permeability become more attractive as a result.

   A Mishrif reservoir in Iraq's southeast has been chosen, and the study is based on data from four wells that penetrate the Mishrif formation. This study discusses some methods for predicting permeability. The conventional method of developing a link between permeability and porosity is one of the strategies. The second technique uses flow units and a flow zone indicator (FZI) to predict the permeability of a rock mass u

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Prediction of pore and fracture pressure using well logs in Mishrif reservoir in an Iraqi oilfield
...Show More Authors

View Publication
Crossref (4)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Proceedings Of International Conference On Computing And Communication Networks
Automatic Health Speech Prediction System Using Support Vector Machine
...Show More Authors

View Publication
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Sat Aug 01 2015
Journal Name
International Journal Of Computer Science And Mobile Computing
Image Compression based on Non-Linear Polynomial Prediction Model
...Show More Authors

Publication Date
Mon Sep 30 2024
Journal Name
Iraqi Journal Of Science
Attention-Deficit Hyperactivity Disorder Prediction by Artificial Intelligence Techniques
...Show More Authors

Attention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained w

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Crossref
Publication Date
Mon Mar 09 2020
Journal Name
Agrosystems, Geosciences & Environment
In-season potato yield prediction with active optical sensors
...Show More Authors

Crop yield prediction is a critical measurement, especially in the time when parts of the world are suffering from farming issues. Yield forecasting gives an alert regarding economic trading, food production monitoring, and global food security. This research was conducted to investigate whether active optical sensors could be utilized for potato (Solanum tuberosum L.) yield prediction at the mid.le of the growing season. Three potato cultivars (Russet Burbank, Superior, and Shepody) were planted and six rates of N (0, 56, 112, 168, 224, and 280 kg ha−1), ammonium sulfate, which was replaced by ammonium nitrate in the 2nd year, were applied on 11 sites in a randomized complete block design, with four replications. Normalized difference ve

... Show More
View Publication
Publication Date
Fri May 01 2020
Journal Name
Journal Of Electrical And Electronics Engineering
HF Wave Propagation Prediction Based On Passive Oblique Ionosonde
...Show More Authors

High frequency (HF) communications have an important role in long distances wireless communications. This frequency band is more important than VHF and UHF, as HF frequencies can cut longer distance with a single hopping. It has a low operation cost because it offers over-the-horizon communications without repeaters, therefore it can be used as a backup for satellite communications in emergency conditions. One of the main problems in HF communications is the prediction of the propagation direction and the frequency of optimum transmission (FOT) that must be used at a certain time. This paper introduces a new technique based on Oblique Ionosonde Station (OIS) to overcome this problem with a low cost and an easier way. This technique uses the

... Show More
View Publication Preview PDF
Scopus
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Experimental Studies and Finite Element Modeling of Piles and Pile Groups in Dry Sand under Harmonic Excitation
...Show More Authors

Foundations supporting reciprocating engines, radar towers, turbines, large electric motors, and generators, etc. are subject to vibrations caused by unbalanced machine forces as well as the static weight of the machine. If these vibrations are excessive, they may damage the machine or cause it not to function properly. In the case of block foundation, if changes in size and mass of the foundation do not lead to a satisfactory design, a pile foundation may be used. In this study, the dynamic response of piles and pile Groups in dry sand is investigated experimentally. The analysis involves the displacement response under harmonic excitation. In addition, a numerical modeling by using finite element method with a three-dimensional formula

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Batch and Fixed-Bed Modeling of Adsorption Reactive Remazol Yellow Dye onto Granular Activated Carbon
...Show More Authors

In this work, the adsorption of reactive yellow dye (Remazol yellow FG dye) by granular activated carbon (GAC) was investigated using batch and continuous process. The batch process involved determination the equilibrium isotherm curve either favorable or unfavorable by estimation relation between adsorption capacity and concentration of dye at different dosage of activated carbon. The results were fitted with equilibrium isotherm models Langmuir and Freundlich models with R2value (>0.97). Batch Kinetic study showed good fitting with pseudo second order model with R2 (0.987) at contact time 5 h. which provesthat the adsorption is chemisorptions nature. Continuous study was done by fixed bed column where breakthrough time was increased

... Show More
View Publication Preview PDF
Crossref