We consider the problem of calibrating range measurements of a Light Detection and Ranging (lidar) sensor that is dealing with the sensor nonlinearity and heteroskedastic, range-dependent, measurement error. We solved the calibration problem without using additional hardware, but rather exploiting assumptions on the environment surrounding the sensor during the calibration procedure. More specifically we consider the assumption of calibrating the sensor by placing it in an environment so that its measurements lie in a 2D plane that is parallel to the ground. Then, its measurements come from fixed objects that develop orthogonally w.r.t. the ground, so that they may be considered as fixed points in an inertial reference frame. Moreover, we consider the intuition that moving the distance sensor within this environment implies that its measurements should be such that the relative distances and angles among the fixed points above remain the same. We thus exploit this intuition to cast the sensor calibration problem as making its measurements comply with this assumption that “fixed features shall have fixed relative distances and angles”. The resulting calibration procedure does thus not need to use additional (typically expensive) equipment, nor deploy special hardware. As for the proposed estimation strategies, from a mathematical perspective we consider models that lead to analytically solvable equations, so to enable deployment in embedded systems. Besides proposing the estimators we moreover analyze their statistical performance both in simulation and with field tests. We report the dependency of the MSE performance of the calibration procedure as a function of the sensor noise levels, and observe that in field tests the approach can lead to a tenfold improvement in the accuracy of the raw measurements.
The -multiple mixing ratios of γ-transitions from levels of populated in the are calculated in the present work by using the a2-ratio methods. We used the experimental coefficient (a2) for two γ-transitions from the same initial state, the statistical tensor, which is related to the a2-coefficient would be the same for the two transitions. This method was used in a previous work for pure transitions or which can be considered pure. In these cases the multiple mixing ratios for the second transition ( ) equal zero, but in our work we applied this method for mixed γ-transitions and then the multiple mixing ratio ( ) is known for one transition. Then we calculate the ( ) value and versareversa. The weight average of the -values calcu
... Show MoreThe main objectives of this research is to extract essential oil from: orange ( citrus sinensis), lemon( citrus limon) and mandarin( citrus reticulata) peels by two methods: steam distillation (SD) and microwave assisted steam distillation (MASD), study the effect of extraction conditions (weight of the sample, extraction time, and microwave power, citrus peel type) on oil yield and compare the results of the two methods, the resulting essential oil was analyzed by Gas Chromatography (GC).
Essential oils are highly concentrated substances used for their flavor and therapeutic or odoriferous properties, in a wide selection of products such as foods, medicines and cosmetics. Extracti
... Show MoreMany objective optimizations (MaOO) algorithms that intends to solve problems with many objectives (MaOP) (i.e., the problem with more than three objectives) are widely used in various areas such as industrial manufacturing, transportation, sustainability, and even in the medical sector. Various approaches of MaOO algorithms are available and employed to handle different MaOP cases. In contrast, the performance of the MaOO algorithms assesses based on the balance between the convergence and diversity of the non-dominated solutions measured using different evaluation criteria of the quality performance indicators. Although many evaluation criteria are available, yet most of the evaluation and benchmarking of the MaOO with state-of-art a
... Show MoreAbstract
A two electrode immersion electrostatic lens used in the design
of an electron gun, with small aberration, has been designed using
the finite element method (FEM). By choosing the appropriate
geometrical shape of there electrodes the potential V(r,z) and the
axial potential distribution have been computed using the FEM to
solve Laplace's equation.
The trajectory of the electron beam and the optical properties of
this lens combination of electrodes have been computed under
different magnification conditions (Zero and infinite magnification
conditions) from studying the properties of the designed electron
gun can be supplied with Abeam current of 5.7*10-6 A , electron
gun with half acceptance
Coblatcomplex has been prepared by reaction between C16H19N3O3S (L) as ligand and metal salt (II). The prepared complex were characterized by infrared spectra, electromic spectra, magnetic susceptibility, molar conductivity measurement and metal analysis by atomic absorption and (C.H.N) analysis. From these studies tetrahedral geometry structure for the complex was suggested. The photodegredation of complex were study using photoreaction cell and preparednanoTiO2 catalyst in different conditions (concentration, temperatures, pH).The results show that the recation is of a first order with activation energy equal to (6.6512 kJ /mol).
This manuscript presents several applications for solving special kinds of ordinary and partial differential equations using iteration methods such as Adomian decomposition method (ADM), Variation iterative method (VIM) and Taylor series method. These methods can be applied as well as to solve nonperturbed problems and 3rd order parabolic PDEs with variable coefficient. Moreover, we compare the results using ADM, VIM and Taylor series method. These methods are a commination of the two initial conditions.
Volterra – Fredholm integral equations (VFIEs) have a massive interest from researchers recently. The current study suggests a collocation method for the mixed Volterra - Fredholm integral equations (MVFIEs)."A point interpolation collocation method is considered by combining the radial and polynomial basis functions using collocation points". The main purpose of the radial and polynomial basis functions is to overcome the singularity that could associate with the collocation methods. The obtained interpolation function passes through all Scattered Point in a domain and therefore, the Delta function property is the shape of the functions. The exact solution of selective solutions was compared with the results obtained
... Show More