We consider the problem of calibrating range measurements of a Light Detection and Ranging (lidar) sensor that is dealing with the sensor nonlinearity and heteroskedastic, range-dependent, measurement error. We solved the calibration problem without using additional hardware, but rather exploiting assumptions on the environment surrounding the sensor during the calibration procedure. More specifically we consider the assumption of calibrating the sensor by placing it in an environment so that its measurements lie in a 2D plane that is parallel to the ground. Then, its measurements come from fixed objects that develop orthogonally w.r.t. the ground, so that they may be considered as fixed points in an inertial reference frame. Moreover, we consider the intuition that moving the distance sensor within this environment implies that its measurements should be such that the relative distances and angles among the fixed points above remain the same. We thus exploit this intuition to cast the sensor calibration problem as making its measurements comply with this assumption that “fixed features shall have fixed relative distances and angles”. The resulting calibration procedure does thus not need to use additional (typically expensive) equipment, nor deploy special hardware. As for the proposed estimation strategies, from a mathematical perspective we consider models that lead to analytically solvable equations, so to enable deployment in embedded systems. Besides proposing the estimators we moreover analyze their statistical performance both in simulation and with field tests. We report the dependency of the MSE performance of the calibration procedure as a function of the sensor noise levels, and observe that in field tests the approach can lead to a tenfold improvement in the accuracy of the raw measurements.
A robust and sensitive analytical method is presented for the extraction and determination of six pharmaceuticals in freshwater sediments.
Extraction of copper (Cu) from aqueous solution utilizing Liquid Membrane technology (LM) is more effective than precipitation method that forms sludge and must be disposed of in landfills. In this work, we have formulated a liquid surfactant membrane (LSM) that uses kerosene oil as the main diluent of LSM to remove copper ions from the aqueous waste solution through di- (2-ethylhexyl) phosphoric acid - D2EHPA- as a carrier. This technique displays several advantages including one-stage extraction and stripping process, simple operation, low energy requirement, and. In this study, the LSM process was used to transport Cu (II) ions from the feed phase to the stripping phase, which was prepared, using H2SO4. For LSM p
... Show MoreNatural frequency under initial stresses for simply supported cross-ply composite laminated plates (E glass- fiber) are obtained using Refind theory (RPT). This theory accounts for parabolic distribution of the transverse shear strain through the plate thickness and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. The governing equations for Eigen value problem under initial stress are derived using Hamilton’s principle and solved using Navier solution for simply supported cross-ply symmetric and antisymmetric laminated plates. The effect of many design factors such as modulus ratio, thickness ratio and number of laminates on the Natural frequency and buckling stresses
... Show MoreThis paper is devoted to investigate the effect of internal curing technique on the properties of self-compacting concrete (SCC). In this study, SCC is produced by using silica fume (SF) as partial replacement by weight of cement with percentage of (5%), sand is partially replaced by volume with saturated fine lightweight aggregate (LWA) which is thermostone chips as internal curing material in three percentages of (5%, 10% and 15%) for SCC, two external curing conditions water and air. The experimental work was divided into three parts: in the first part, the workability tests of fresh SCC were conducted. The second part included conducting compressive strength test and modulus of rupture test at ages of (7, 28 and 90). The third part i
... Show MoreHyperpigmentation is the increase in the natural color of the skin. The purpose of this study is to evaluate the efficacy and safety of Q-Switched Nd:YAG (1064 & 532 nm) Laser in treatment of skin hyper pigmentation. This study was done in the research clinic of Institute of laser for postgraduate Studies/University of Baghdad from October 2008 to the end of January 2009. After clinical assessment of skin hyperpigmentation color, twenty six patients were divided according to their lesions. Eight Patients with freckles, seven patients with melasma, four patients with tattoo. Cases with tattoo, were subdivided into amateur tattoos two, professional tattoos one, and one traumatic tattoo. Four Patients with post inflammatory hyperpigment
... Show MoreThe pervaporation using a commercial hydrophilic ceramic membrane supplied from PERVATECH was conducted. The dehydration of ethanol/ water system was used as a model for the pervaporation study. Pervaporation experiments of ethanol/water system were carried out in the temperature range of 303-343K, ethanol concentration in the feed 10-90 vol. % and the feed flow rate in the range of 0.5-10 L/min. In this work, the effect of operation parameters on permeates fluxes as well as permeates separation factors have been studied. The Water flux is strongly dependent on the temperature; it increased with increasing in temperature, which in turn decreased the selectivity of membrane to water molecules.
In addition water flux was decr
... Show More