We consider the problem of calibrating range measurements of a Light Detection and Ranging (lidar) sensor that is dealing with the sensor nonlinearity and heteroskedastic, range-dependent, measurement error. We solved the calibration problem without using additional hardware, but rather exploiting assumptions on the environment surrounding the sensor during the calibration procedure. More specifically we consider the assumption of calibrating the sensor by placing it in an environment so that its measurements lie in a 2D plane that is parallel to the ground. Then, its measurements come from fixed objects that develop orthogonally w.r.t. the ground, so that they may be considered as fixed points in an inertial reference frame. Moreover, we consider the intuition that moving the distance sensor within this environment implies that its measurements should be such that the relative distances and angles among the fixed points above remain the same. We thus exploit this intuition to cast the sensor calibration problem as making its measurements comply with this assumption that “fixed features shall have fixed relative distances and angles”. The resulting calibration procedure does thus not need to use additional (typically expensive) equipment, nor deploy special hardware. As for the proposed estimation strategies, from a mathematical perspective we consider models that lead to analytically solvable equations, so to enable deployment in embedded systems. Besides proposing the estimators we moreover analyze their statistical performance both in simulation and with field tests. We report the dependency of the MSE performance of the calibration procedure as a function of the sensor noise levels, and observe that in field tests the approach can lead to a tenfold improvement in the accuracy of the raw measurements.
Worldwide, shipping documents are still primarily created and handled in the traditional paper manner. Processes taking place in shipping ports as a result are time-consuming and heavily dependent on paper. Shipping documents are particularly susceptible to paperwork fraud because they involve numerous parties with competing interests. With the aid of smart contracts, a distributed, shared, and append-only ledger provided by blockchain technology allows for the addition of new records. In order to increase maritime transport and port efficiency and promote economic development, this paper examines current maritime sector developments in Iraq and offers a paradigm to secure the management system based on a hyper-ledger fabric blockchain p
... Show MoreIn this paper, the developed sprite allocation method is designed to be coherent with the introduced block-matching method in order to minimize the allocation process time for digital video. The accomplished allocation process of sprite region consists of three main steps. The first step is the detection of sprite area; where the sequence of frames belong to Group of Video sequence are analysed to detect the sprite regions which survive for long time, and to determine the sprite type (i.e., whether it is static or dynamic). Then as a second step, the flagged survived areas are passed through the gaps/islands removal stage to enhance the detected sprite areas using post-processing operations. The third step is partitioning the sprite area in
... Show MoreAspect-Oriented Software Development (AOSD) is a technology that helps achieving
better Separation of Concern (SOC) by providing mechanisms to identify all relevant points
in a program at which aspectual adaptations need to take place. This paper introduces a
banking application using of AOSD with security concern in information hiding.
The complexity of multimedia contents is significantly increasing in the current world. This leads to an exigent demand for developing highly effective systems to satisfy human needs. Until today, handwritten signature considered an important means that is used in banks and businesses to evidence identity, so there are many works tried to develop a method for recognition purpose. This paper introduced an efficient technique for offline signature recognition depending on extracting the local feature by utilizing the haar wavelet subbands and energy. Three different sets of features are utilized by partitioning the signature image into non overlapping blocks where different block sizes are used. CEDAR signature database is used as a dataset f
... Show MoreImage Fusion Using A Convolutional Neural Network
Smart water flooding (low salinity water flooding) was mainly invested in a sandstone reservoir. The main reasons for using low salinity water flooding are; to improve oil recovery and to give a support for the reservoir pressure.
In this study, two core plugs of sandstone were used with different permeability from south of Iraq to explain the effect of water injection with different ions concentration on the oil recovery. Water types that have been used are formation water, seawater, modified low salinity water, and deionized water.
The effects of water salinity, the flow rate of water injected, and the permeability of core plugs have been studied in order to summarize the best conditions of low salinity
... Show MoreThe proliferation of cellular network enabled users through various positioning tools to track locations, location information is being continuously captured from mobile phones, created a prototype that enables detected location based on using the two invariant models for Global Systems for Mobile (GSM) and Universal Mobile Telecommunications System (UMTS). The smartphone application on an Android platform applies the location sensing run as a background process and the localization method is based on cell phones. The proposed application is associated with remote server and used to track a smartphone without permissions and internet. Mobile stored data location information in the database (SQLite), then transfer it into location AP
... Show MoreUsed automobile oils were subjected to filtration to remove solid material and dehydration to remove water, gasoline and light components by using vacuum distillation under moderate pressure, and then the dehydrated waste oil is subjected to extraction by using liquid solvents. Two solvents, namely n-butanol and n-hexane were used to extract base oil from automobile used oil, so that the expensive base oil can be reused again.
The recovered base oil by using n-butanol solvent gives (88.67%) reduction in carbon residue, (75.93%) reduction in ash content, (93.73%) oil recovery, (95%) solvent recovery and (100.62) viscosity index, at (5:1) solvent to used oil ratio and (40 oC) extraction temperature, while using n-hexane solvent gives (6