There is an interesting potential for the use of GFRP-pultruded profiles in hybrid GFRP-concrete structural elements, either for new constructions or for the rehabilitation of existing structures. This paper provides experimental and numerical investigations on the flexural performance of reinforced concrete (RC) specimens composite with encased pultruded GFRP I-sections. Five simply supported composite beams were tested in this experimental program to investigate the static flexural behavior of encased GFRP beams with high-strength concrete. Besides, the effect of using shear studs to improve the composite interaction between the GFRP beam and concrete as well as the effect of web stiffeners of GFRP were explored. Encasing the GFRP beam with concrete enhanced the peak load by 58.3%. Using shear connectors, web stiffeners, and both improved the peak loads by 100.6%, 97.3%, and 130.8%, respectively. The GFRP beams improved ductility by 21.6% relative to the reference one without the GFRP beam. Moreover, the shear connectors, web stiffeners, and both improved ductility by 185.5%, 119.8%, and 128.4%, respectively, relative to the encased reference beam. Furthermore, a non-linear Finite Element (FE) model was developed and validated by the experimental results to conduct a parametric study to investigate the effect of the concrete compressive strength and tensile strength of the GFRP beam. The developed FE model provided good agreement with the experimental results regarding deformations and damaged patterns.
This experimental study demonstrates the gable-reinforced concrete beams’ behavior with several number of openings (six and eight) and posts’ inclination, aimed to find the strength reduction in this type of beam. The major results found are: for the openings extending over similar beam length it is better to increase the number of posts (openings),
The studies on unbonded post-tensioned concrete members strengthened with Carbon Fiber Reinforced Polymers (CFRPs) are limited and the effect of strengthening on the strain of unbonded pre-stressed steel is not well characterized. Estimating the flexural capacity of unbound post-tensioned members using the design methodology specified in the design guidelines for FRP strengthening techniques of bonded post-tensioned members does not provide a reliable evaluation. This study investigates the behavior of unbonded post-tensioned concrete members with partial strand damage (14.3% and 28.6% damage) and strengthened with CFRP laminates using a near-surface mounted technique with and without U-wrap anchorages. The experimental results show
... Show MoreThis paper aims to investigate the flexural behavior of reinforced concrete beams considering fire resistance by adding Lightweight Expanded Clay Aggregates (LECA) to the concrete mix as partial coarse aggregate replacement. LECA is a type of porous clay with a uniform pore structure with fine, closed cells and hard, tightly sintered skin. The experimental work comprised four reinforced self-compacted concrete beams. All the specimens were identical in their geometrical layout of 1600×240×200 mm, reinforcement details, and support condition (simply supported). For all the beams, the main reinforcement was provided by two bars, each having a diameter of 12 mm, while a bar of 6 mm diameter was employed for the top and shear reinforc
... Show MoreSeeds of five cultivars of oats (Avena sativa) were introduced from Italy in 2009. Seeds were propagated on the farm of the Dept. of Field Crops Sci. / Coll. of Agric. / Univ. of Baghdad in the season 2009 – 2010. The cultivars Anatolia, Alguda, Hamel, Pimula and Genzania were planted under 3 irrigation intervals; 3, 4 and 5 weeks to give water depth of 480, 400 and 320 mm, respectively . The depth of water was 80 mm each irrigation. A factorial experiment with RCBD of 4 replicates was conducted in 2 consecutive seasons in 2010 – 2011 and 2011 – 2012. The cultivar Alguda gave highest grain yield (8.07 t/ ha) under 480 mm, and 7.02 t / ha average of 3 water depths. This cultivar was characterized by high growth rate (13.2 g/m2/ d) that
... Show MoreIn this study, the effects of different loading doses of cerium in the prepared NaY zeolite from Iraqi kaolin were investigated. Al-Duara refinery atmospheric residue fluid catalytic cracking was selected as palpation reaction for testing the catalytic activity of cerium loading NaY zeolite. The insertion of cerium in NaY zeolites has been synthesized by simple ion exchange methods. Three samples of modified zeolite Y have been obtained by replacing the sodium ions in the original sample with cerium and the weight percent added are 0.35, 0.64, and 1.06 respectively. The effects of cerium loading to zeolite Y in different weight percent on the cracking catalysts were studied by employing a laboratory fluidized
... Show MoreOne of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model at elevated t
... Show MoreOne of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model at elevated t
... Show MoreOne of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model a
... Show MoreWisconsin Breast Cancer Dataset (WBCD) was employed to show the performance of the Adaptive Resonance Theory (ART), specifically the supervised ART-I Artificial Neural Network (ANN), to build a breast cancer diagnosis smart system. It was fed with different learning parameters and sets. The best result was achieved when the model was trained with 50% of the data and tested with the remaining 50%. Classification accuracy was compared to other artificial intelligence algorithms, which included fuzzy classifier, MLP-ANN, and SVM. We achieved the highest accuracy with such low learning/testing ratio.