There is an interesting potential for the use of GFRP-pultruded profiles in hybrid GFRP-concrete structural elements, either for new constructions or for the rehabilitation of existing structures. This paper provides experimental and numerical investigations on the flexural performance of reinforced concrete (RC) specimens composite with encased pultruded GFRP I-sections. Five simply supported composite beams were tested in this experimental program to investigate the static flexural behavior of encased GFRP beams with high-strength concrete. Besides, the effect of using shear studs to improve the composite interaction between the GFRP beam and concrete as well as the effect of web stiffeners of GFRP were explored. Encasing the GFRP beam with concrete enhanced the peak load by 58.3%. Using shear connectors, web stiffeners, and both improved the peak loads by 100.6%, 97.3%, and 130.8%, respectively. The GFRP beams improved ductility by 21.6% relative to the reference one without the GFRP beam. Moreover, the shear connectors, web stiffeners, and both improved ductility by 185.5%, 119.8%, and 128.4%, respectively, relative to the encased reference beam. Furthermore, a non-linear Finite Element (FE) model was developed and validated by the experimental results to conduct a parametric study to investigate the effect of the concrete compressive strength and tensile strength of the GFRP beam. The developed FE model provided good agreement with the experimental results regarding deformations and damaged patterns.
This experimental study demonstrates the gable-reinforced concrete beams’ behavior with several number of openings (six and eight) and posts’ inclination, aimed to find the strength reduction in this type of beam. The major results found are: for the openings extending over similar beam length it is better to increase the number of posts (openings),
The research problem has crystallized and in light of these capabilities, the level of performance depends on the application of modern training methods based on actual experimentation, and those methods aim to develop the components of achievement in this competition, including the quantities of exerting the distinctive strength with speed for the arms and feet, which reflects on good skillful performance because the skill of shooting by jumping forward and high forms A major role in achieving goals during the competition that qualifies the team to win, and through the follow-up of the researcher in the field and academic field, I noticed that there is a weakness in some physical abilities, which affects performance and skill level
... Show MoreAcromegaly is ametabolic disorder characterized by an acquired progressive somatic disfigurement, mainly involving the face, extremities and many other organs, that are associated with systemic manifestations, caused by excessive secretion of growth hormone and a resultant persistent elevation of insulin-like growth factor-I concentrations. In more than 90% of cases originates from a monoclonal benign pituitary adenoma. Aim of this study to assess the level of insulin-like growth factor-I (IGF-I) in saliva of acromegalic patients, and to compare it with the basal levels of serum IGF-I. Sixty specimens of serum and saliva collected from two groups of subjects (forty acromegalic patients and twenty healthy persons). The specimens were
... Show MoreThis study aimed at comparing the performance of vertical, horizontal and hybrid subsurface flow systems in secondary treatment for the effluent wastewater from the primary basins at Al-Rustumia wastewater treatment plant, Baghdad, Iraq. The treatments were monitored for six weeks while the testsduration were from 4 to 12 September 2018 under continuous wastewater feeding for chemical oxygen demand (COD), total suspended solid (TSS),ammonia-nitrogen(NH4-N) and phosphate (PO4-P) in comparison with FAO and USEPA standards for effluent discharge to evaluate the suitability of treated water for irrigation purposes. Among the systems planted with Phragmites Australia, the hybrid subsurface flow system which cons
... Show MoreBackground: One of the most common complications of dentures is its ability to fracture, so the aim of this study was to reinforce the high impact denture base with carbon nanotubes in different concentrations to improve the mechanical and physical properties of the denture base. Materials and methods: Three concentrations of carbon nanotubes was used 0.5%, 1%, 1.5% in a pilot study to see the best values regarding transverse strength, impact, hardness and roughness test, 1 wt% was the best concentration, so new samples for control group and 1wt% carbon nanotubes and the previous tests were of course repeated. Results: There was a significant increase in impact strength and transverse strength when we add carbon nanotubes in 1wt%, compared
... Show More