In this work, a fiber-optic biomedical sensor was manufactured to detect hemoglobin percentages in the blood. SPR-based coreless optical fibers were developed and implemented using single and multiple optical fibers. It was also used to calculate refractive indices and concentrations of hemoglobin in blood samples. An optical fiber, with a thickness of 40 nanometers, was deposited on gold metal for the sensing area to increase the sensitivity of the sensor. The optical fiber used in this work has a diameter of 125μm, no core, and is made up of a pure silica glass rod and an acrylate coating. The length of the fiber was 4cm removed buffer and the splicing process was done. It is found in practice that when the sensitive refractive index increases, the resonant wavelength increases due to the decrease in energy.
The present paper deals with prepared of ternary Se80-xTe20Gex system alloys and thin films. The XRD analysis improved that the amorphous structure of alloys and thin films for ternary Se80-xTe20Gex (at x=10and 20at.%Ge) which prepared by thermal evaporation techniques with thickness 250 nm. The optical energy gap measurements show that the optical energy gap decreases with increasing of (Ge) content from (1.7 to 1.47 eV)
It is found that the optical constants, such as refractive
index ,extinction coefficient, real and imaginary dielectric
constant are non systematic with increasing of Ge contents
and annealing temperatures
Non thermal argon plasma needle at atmospheric pressure was constructed. The experimental set up was based on simple and low cost electric components that generate electrical field sufficiently high at the electrodes to ionize various gases which flow at atmospheric pressure. A high AC power supply was used with 9.6kV peak to peak and 33kHz frequency. The plasma was generated using two electrodes. The voltage and current discharge waveform were measured. The temperature of Ar gas plasma jet at different gas flow rate and distances from the plasma electrode was also recorded. It was found that the temperature increased with increasing frequency to reach the maximum value at 15 kHz, and that the current leading the voltage, which demonstra
... Show MoreThe work in this paper focuses on the system quality of direct and coherent communication system for two computers. A system quality is represented by Signal to Noise ratio (SNR) and Bit Error Rate (BER). First part of the work includes implementation of direct optical fiber communication system and measure the system quality .The second part of the work include implementation both the( homodyne and heterodyne)coherent optical fiber communication system and measure the system quality . Laser diode 1310 nm wavelength with its drive circuit used in the transmitter circuit . A single mode of 62.11 km optical fiber is selected as transmission medium . A PIN photo detector is used in the receiver circuit. The optical D-coupler was u
... Show MoreThin films of tin sulfide (SnS) were prepared by thermal evaporation technique on glass substrates, with thickness in the range of 100, 200 and 300nm and their physical properties were studied with appropriate techniques. The phase of the synthesized thin films was confirmed by X-ray diffraction analysis. Further, the crystallite size was calculated by Scherer formula and found to increase from 58 to 79 nm with increase of thickness. The obtained results were discussed in view of testing the suitability of SnS film as an absorber for the fabrication of low-cost and non toxic solar cell. For thickness, t=300nm, the films showed orthorhombic OR phase with a strong (111) preferred orientation. The films deposited with thickness < 200nm deviate
... Show MoreStudied the optical properties of the membranes CdS thin containing different ratios of ions cadmium to sulfur attended models manner spraying chemical gases on the rules of the glass temperature preparation (350c) were calculated energy gap allowed direct these membranes as observed decrease in the value of the energy gap at reducing the proportion ofsulfur ions as absorption coefficient was calculated
Vanadium dioxide nanofilms are one of the most essential materials in electronic applications like smart windows. Therefore, studying and understanding the optical properties of such films is crucial to modify the parameters that control these properties. To this end, this work focuses on investigating the opacity as a function of the energy directed at the nanofilms with different thicknesses(1–100) nm. Effective mediator theories(EMTs), which are considered as the application of Bruggeman’s formalism and the Looyenga mixing rule, have been used to estimate the dielectric constant of VO2 nanofilms. The results show different opacity behaviors at different wavelength ranges(ultraviolet, visible, and infrared). The results depict that th
... Show MoreThis contribution aims to investigate volume-dependent thermal and mechanical properties of the two most studied phases of molybdenum nitride (c-MoN and h-MoN) by means of the quasi-harmonic approximation approach (QHA) via first-principles calculations up to their melting point and a pressure of 12 GPa. Lattice constants, band gaps, and bulk modulus at 0 K match corresponding experimental measurements well. Calculated Bader’s charges indicate that Mo–N bonds exhibit a more ionic nature in the cubic MoN phase. Based on estimated Gibbs free energies, the cubic phase presents thermodynamic stability higher than that detected for hexagonl, with no phase transition observed in the selected T–P conditions as detected experimentall
... Show MoreElectronic properties including (bond length, energy gap, HOMO, LUMO and density of state) as well as spectroscopic properties such like infrared, Raman scattering, force constant, reduced mass and longitu- dinal optical mode as a function of frequency are based on size and concentration of the molecular and nanostructures of aluminum nitride ALN, boron nitride BN and AlxB7-XN7 as nanotubes has calculated using Ab –initio approximation method dependent on density functional theory and generalized gradient approximation. The geometrical structure are calculated by using Gauss view 05 as a complementary program. Shows the energy gap of ALN, BN and AlxB7-XN7 as a function of the total number of atoms , start from smallest molecule to reached
... Show Moret:
The most famous thing a person does is talk. He loves and hates, and continues with it confirming relationships, and with it, too, comes out of disbelief into faith. Marry a word and separate with a word. He reaches the top of the heavens with a kind word, with which he will gain the pleasure of God, and the Lord of a word that the servant speaks to which God writes with our pleasure or throws him on his face in the fire. Emotions are inflamed, the United Nations is intensified with a word, and relations between states and war continue with a word.
What comes out of a person’s mouth is a translator that expresses the repository of his conscience and reveals the place of his bed, for it is evidence of
... Show More