Preferred Language
Articles
/
bBfc65IBVTCNdQwCmsNf
Artificial Neural Network Application to Permeability Prediction from Nuclear Magnetic Resonance Log
...Show More Authors

Reservoir permeability plays a crucial role in characterizing reservoirs and predicting the present and future production of hydrocarbon reservoirs. Data logging is a good tool for assessing the entire oil well section's continuous permeability curve. Nuclear magnetic resonance logging measurements are minimally influenced by lithology and offer significant benefits in interpreting permeability. The Schlumberger-Doll-Research model utilizes nuclear magnetic resonance logging, which accurately estimates permeability values. The approach of this investigation is to apply artificial neural networks and core data to predict permeability in wells without a nuclear magnetic resonance log. The Schlumberger-Doll-Research permeability is used to train the model, where the model prediction result is validated with core permeability. Seven oil well logs were used as input parameters, and the model was constructed with Techlog software. The predicted permeability with the model compared with Schlumberger-Doll-Research permeability as a cross plot, which results in the correlation coefficient of 94%, while the predicted permeability validated with the core permeability of the well, which obtains good agreement where R2 equals 80%. The model was utilized to forecast permeability in a well that did not have a nuclear magnetic resonance log, and the predicted permeability was cross-plotted against core permeability as a validation step, with a correlation coefficient of 77%. As a result, the low percentage of matching was due to data limitations, which demonstrated that as the amount of data used to train the model increased, so did the precision.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Engineering
Deterioration Model for Sewer Network Asset Management in Baghdad City (case study Zeppelin line)
...Show More Authors

Asset management involves efficient planning of economic and technical performance characteristics of infrastructure systems. Managing a sewer network requires various types of activities so the network can be able to achieve a certain level of performance. During the lifetime of the network various components will start to deteriorate leading to bad performance and can damage the infrastructure. The main objective of this research is to develop deterioration models to provide an assessment tool for determining the serviceability of the sewer networks in Baghdad city the Zeppelin line was selected as a case study, as well as to give top management authorities the appropriate decision making. Different modeling techniques

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 18 2024
Journal Name
Bmc Medical Education
Demographic factors, knowledge, attitude and perception and their association with nursing students’ intention to use artificial intelligence (AI): a multicentre survey across 10 Arab countries
...Show More Authors

View Publication
Scopus (20)
Crossref (20)
Scopus Clarivate Crossref
Publication Date
Wed Jun 05 2024
Journal Name
International Journal Of Engineering Pedagogy (ijep)
The Impact of Artificial Intelligence on Computational Thinking in Education at University
...Show More Authors

This study aims to reveal the role of one of the artificial intelligence (AI) techniques, “ChatGPT,” in improving the educational process by following it as a teaching method for the subject of automatic analysis for students of the Chemistry Department and the subject of computer security for students of the Computer Science Department, from the fourth stage at the College of Education for Pure Science (Ibn Al-Haitham), and its impact on their computational thinking to have a good educational environment. The experimental approach was used, and the research samples were chosen intentionally by the research community. Research tools were prepared, which included a scale for CT that included 12 items and the achievement test in b

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Oct 06 2012
Journal Name
Journal Of Engineering
Prediction of Smear Effect on the Bearing Capacity of Driven Piles
...Show More Authors

Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Intelligent Systems
Optimizing genetic prediction: Define-by-run DL approach in DNA sequencing
...Show More Authors

Abstract: The utility of DNA sequencing in diagnosing and prognosis of diseases is vital for assessing the risk of genetic disorders, particularly for asymptomatic individuals with a genetic predisposition. Such diagnostic approaches are integral in guiding health and lifestyle decisions and preparing families with the necessary foreknowledge to anticipate potential genetic abnormalities. The present study explores implementing a define-by-run deep learning (DL) model optimized using the Tree-structured Parzen estimator algorithm to enhance the precision of genetic diagnostic tools. Unlike conventional models, the define-by-run model bolsters accuracy through dynamic adaptation to data during the learning process and iterative optimization

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Nov 30 2018
Journal Name
Iop Conference Series: Materials Science And Engineering
Damage pattern scope prediction for well point dewatering on building foundations
...Show More Authors

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Surface Roughness after Turning of Duplex Stainless Steel (DSS)
...Show More Authors

Feed Forward Back Propagation artificial neural network (ANN) model utilizing the MATLAB Neural Network Toolbox is designed for the prediction of surface roughness of Duplex Stainless Steel during orthogonal turning with uncoated carbide insert tool. Turning experiments were performed at various process conditions (feed rate, cutting speed, and cutting depth). Utilizing the Taguchi experimental design method, an optimum ANN architecture with the Levenberg-Marquardt training algorithm was obtained. Parametric research was performed with the optimized ANN architecture to report the impact of every turning parameter on the roughness of the surface. The results suggested that machining at a cutting speed of 355 rpm with a feed rate of 0.07 m

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Mar 03 2024
Journal Name
Mesopotamian Journal Of Cybersecurity
Using Information Technology for Comprehensive Analysis and Prediction in Forensic Evidence
...Show More Authors

With the escalation of cybercriminal activities, the demand for forensic investigations into these crimeshas grown significantly. However, the concept of systematic pre-preparation for potential forensicexaminations during the software design phase, known as forensic readiness, has only recently gainedattention. Against the backdrop of surging urban crime rates, this study aims to conduct a rigorous andprecise analysis and forecast of crime rates in Los Angeles, employing advanced Artificial Intelligence(AI) technologies. This research amalgamates diverse datasets encompassing crime history, varioussocio-economic indicators, and geographical locations to attain a comprehensive understanding of howcrimes manifest within the city. Lev

... Show More
View Publication
Scopus (21)
Crossref (11)
Scopus Crossref
Publication Date
Sat Jul 22 2023
Journal Name
Journal Of Engineering
Prediction of Smear Effect on the Bearing Capacity of Driven Piles
...Show More Authors

This paper deals with prediction the effect of soil remoulding (smear) on the ultimate bearing capacity of driven piles. The proposed method based on detecting the decrease in ultimate bearing capacity of the pile shaft (excluding the share of pile tip) after sliding downward. This was done via conducting an experimental study on three installed R.C piles in a sandy clayey silt soil. The piles were installed so that a gap space is left between its tip and the base of borehole. The piles were tested for ultimate bearing capacity
according to ASTM D1143 in three stages. Between each two stages the pile was jacked inside the borehole until a sliding of about 200mm is achieved to simulate the soil remoulding due to actual pile driving. T

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Journal Of Applied Hematology
D-dimer and Ferritin Levels in Prediction of COVID-19 Severity
...Show More Authors
Abstract<sec> <title>BACKGROUND:

The most common cause of upper respiratory tract infection is coronavirus, which has a crown appearance due to the existence of spikes on its envelope. D-dimer levels in the plasma have been considered a prognostic factor for COVID-19 patients.

AIM OF THE STUDY:

The aim of the study is to demonstrate the role of COVID-19 on coagulation parameters D-dimer and ferritin with their association with COVID-19 severity and disease progression in a single-center study.

... Show More
View Publication
Scopus Crossref