In this paper a modified approach have been used to find the approximate solution of ordinary delay differential equations with constant delay using the collocation method based on Bernstien polynomials.
In this paper,the homtopy perturbation method (HPM) was applied to obtain the approximate solutions of the fractional order integro-differential equations . The fractional order derivatives and fractional order integral are described in the Caputo and Riemann-Liouville sense respectively. We can easily obtain the solution from convergent the infinite series of HPM . A theorem for convergence and error estimates of the HPM for solving fractional order integro-differential equations was given. Moreover, numerical results show that our theoretical analysis are accurate and the HPM can be considered as a powerful method for solving fractional order integro-diffrential equations.
... Show MoreThe aim of this paper is to describe an epidemic model when two SI-Type of diseases are transmitted vertically as well as horizontally through one population. The population contains two subclasses: susceptible and infectious, while the infectious are divided into three subgroups: Those infected by AIDS disease, HCV disease, and by both diseases. A nonlinear mathematical model for AIDS and HCV diseases is Suggested and analyzed. Both local and global stability for each feasible equilibrium point are determined theoretically by using the stability theory of differential equations, Routh-Hurwitz and Gershgorin theorem. Moreover, the numerical simulation was carried out on the model parameters in order to determine their impact on the disease
... Show MoreInelastic magnetic electron scattering M1 at Ex =10.23 MeV form factors in Ca-48 have been investigated. The fp shell model space with four orbits and eight neutrons have been considered and FPD6 has been selected between 32 model space effective interactions to generates the model space vectors for the M1 transition with excitation energy Ex =10.23 MeV and for constructing OBDM. Discarded space (core and higher configuration orbits) has been included through the first order perturbation theory to couple the partice-hole pair of excitation in the calculation of the total M1 form factor and regarding the realistic interaction M3Y as a core polarization interaction with six sets of fitting parameters. Finally the theoretical calculations h
... Show MoreA free convective heat transfer from the inside surface of a uniformly heated vertical circular tube has been experimentally investigated under a constant wall heat flux boundary condition for laminar air flow in the ranges of RaL from 6.9108 to 5109. The effect of the different sections (restrictions) lengths placed at the exit of the heated tube on the surface temperature distribution, the local and average heat transfer coefficients were examined. The experimental apparatus consists of aluminum circular tube with 900 mm length and 30 mm inside diameter (L/D=30). The exit sections (restrictions) were included circular tubes having the same inside diameter as the heated tube but with different lengths of
... Show MoreDegenerate parabolic partial differential equations (PDEs) with vanishing or unbounded leading coefficient make the PDE non-uniformly parabolic, and new theories need to be developed in the context of practical applications of such rather unstudied mathematical models arising in porous media, population dynamics, financial mathematics, etc. With this new challenge in mind, this paper considers investigating newly formulated direct and inverse problems associated with non-uniform parabolic PDEs where the leading space- and time-dependent coefficient is allowed to vanish on a non-empty, but zero measure, kernel set. In the context of inverse analysis, we consider the linear but ill-pose
In this paper, a procedure to establish the different performance measures in terms of crisp value is proposed for two classes of arrivals and multiple channel queueing models, where both arrival and service rate are fuzzy numbers. The main idea is to convert the arrival rates and service rates under fuzzy queues into crisp queues by using graded mean integration approach, which can be represented as median rule number. Hence, we apply the crisp values obtained to establish the performance measure of conventional multiple queueing models. This procedure has shown its effectiveness when incorporated with many types of membership functions in solving queuing problems. Two numerical illustrations are presented to determine the validity of the
... Show More